This paper considers structures of systems beyond dyadic (pairwise) interactions and investigates mathematical modeling of multi-way interactions and connections as hypergraphs, where captured relationships among system entities are set-valued. To date, in most situations, entities in a hypergraph are considered connected as long as there is at least one common "neighbor". However, minimal commonality sometimes discards the "strength" of connections and interactions among groups. To this end, considering the "width" of a connection, referred to as the \emph{$s$-overlap} of neighbors, provides more meaningful insights into how closely the communities or entities interact with each other. In addition, $s$-overlap computation is the fundamental kernel to construct the line graph of a hypergraph, a low-order approximation which can carry significant information about the original hypergraph. Subsequent stages of a data analytics pipeline then can apply highly-tuned graph algorithms on the line graph to reveal important features. Given a hypergraph, computing the $s$-overlaps by exhaustively considering all pairwise entities can be computationally prohibitive. To tackle this challenge, we develop efficient algorithms to compute $s$-overlaps and the corresponding line graph of a hypergraph. We propose several heuristics to avoid execution of redundant work and improve performance of the $s$-overlap computation. Our parallel algorithm, combined with these heuristics, demonstrates better performance.


翻译:本文考虑超越dyadi (pairwise) 互动的系统结构, 并调查多路互动和连接的数学模型, 即高光谱, 系统实体之间截取的关系被设定为定值。 到目前为止, 高光谱中的实体只要至少有一个共同的“ 邻居 ”, 就被视为连接。 然而, 最小的共性有时会抛弃各组之间连接和互动的“ 强度 ” 。 为此, 考虑到连接的“ 强度 ”, 即邻居的“ 重线 $ ”, 更有意义地揭示了社区或实体彼此之间如何密切互动。 此外, $ 美元 的重叠计算是构建高光线图的基本要素。 低级的近似性能可以包含关于原始高光线的显著信息。 数据分析管道随后的阶段可以在线图上应用高度调的图形算法来揭示重要特征。 高光度测量、 计算美元 、 美元 美元 和 美元 数字 的数学, 我们用精确的混合的计算, 来计算, 以更精确地计算, 的计算, 。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
【知识图谱@EMNLP2020】Knowledge Graphs in NLP @ EMNLP 2020
专知会员服务
43+阅读 · 2020年11月22日
图节点嵌入(Node Embeddings)概述,9页pdf
专知会员服务
40+阅读 · 2020年8月22日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
17篇知识图谱Knowledge Graphs论文 @AAAI2020
专知会员服务
172+阅读 · 2020年2月13日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
图表示学习Graph Embedding综述
AINLP
34+阅读 · 2020年5月17日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Graph Neural Networks 综述
计算机视觉life
30+阅读 · 2019年8月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
1+阅读 · 2020年12月13日
Arxiv
0+阅读 · 2020年12月12日
Arxiv
0+阅读 · 2020年12月11日
Efficiently Embedding Dynamic Knowledge Graphs
Arxiv
14+阅读 · 2019年10月15日
Arxiv
12+阅读 · 2019年2月26日
Arxiv
7+阅读 · 2018年8月21日
Arxiv
4+阅读 · 2018年6月5日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
【知识图谱@EMNLP2020】Knowledge Graphs in NLP @ EMNLP 2020
专知会员服务
43+阅读 · 2020年11月22日
图节点嵌入(Node Embeddings)概述,9页pdf
专知会员服务
40+阅读 · 2020年8月22日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
17篇知识图谱Knowledge Graphs论文 @AAAI2020
专知会员服务
172+阅读 · 2020年2月13日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
图表示学习Graph Embedding综述
AINLP
34+阅读 · 2020年5月17日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Graph Neural Networks 综述
计算机视觉life
30+阅读 · 2019年8月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Arxiv
1+阅读 · 2020年12月13日
Arxiv
0+阅读 · 2020年12月12日
Arxiv
0+阅读 · 2020年12月11日
Efficiently Embedding Dynamic Knowledge Graphs
Arxiv
14+阅读 · 2019年10月15日
Arxiv
12+阅读 · 2019年2月26日
Arxiv
7+阅读 · 2018年8月21日
Arxiv
4+阅读 · 2018年6月5日
Top
微信扫码咨询专知VIP会员