Traffic state estimation (TSE) bifurcates into two main categories, model-driven and data-driven (e.g., machine learning, ML) approaches, while each suffers from either deficient physics or small data. To mitigate these limitations, recent studies introduced hybrid methods, such as physics-informed deep learning (PIDL), which contains both model-driven and data-driven components. This paper contributes an improved paradigm, called physics-informed deep learning with a fundamental diagram learner (PIDL+FDL), which integrates ML terms into the model-driven component to learn a functional form of a fundamental diagram (FD), i.e., a mapping from traffic density to flow or velocity. The proposed PIDL+FDL has the advantages of performing the TSE learning, model parameter discovery, and FD discovery simultaneously. This paper focuses on highway TSE with observed data from loop detectors, using traffic density or velocity as traffic variables. We demonstrate the use of PIDL+FDL to solve popular first-order and second-order traffic flow models and reconstruct the FD relation as well as model parameters that are outside the FD term. We then evaluate the PIDL+FDL-based TSE using the Next Generation SIMulation (NGSIM) dataset. The experimental results show the superiority of the PIDL+FDL in terms of improved estimation accuracy and data efficiency over advanced baseline TSE methods, and additionally, the capacity to properly learn the unknown underlying FD relation.
翻译:为了减轻这些限制,最近的研究采用了混合方法,例如物理学知情深层学习(PIDL),其中包括模型驱动和数据驱动的成分。本文提供改进的范例,称为物理知情深层学习,并配有一个基本的图表学习者(PIDL+FDL),将ML术语纳入模型驱动的构成部分,以学习基本图表(FD)的功能形式,即从流量密度到流量或速度的绘图。拟议的PIDL+FDL具有同时进行TSE学习、模型参数发现和FDD发现等混合方法的优势。本文侧重于TSE高速公路,使用循环探测器的观测数据,使用交通密度或速度作为交通变量。我们展示了PIDL+FDL用于解决流行的第一阶和第二阶流动模型,并将FD关系和模型重建为T-FDFD基础的模型,而该模型的精确度则从流量到流量或速度。我们随后用SDFDML数据更新了SIM的高级数据。我们然后用SADL数据更新了SDL的精确度。我们评估了SDDL的高级数据。