Various defense models have been proposed to resist adversarial attack algorithms, but existing adversarial robustness evaluation methods always overestimate the adversarial robustness of these models (i.e. not approaching the lower bound of robustness). To solve this problem, this paper first uses the Decouple Space method to divide the classifier into two parts: non-linear and linear. On this basis, this paper defines the representation vector of original example (and its space, i.e., the representation space) and uses Absolute Classification Boundaries Initialization (ACBI) iterative optimization to obtain a better attack starting point (i.e. attacking from this point can approach the lower bound of robustness faster). Particularly, this paper apply ACBI to nearly 50 widely-used defense models (including 8 architectures). Experimental results show that ACBI achieves lower robust accuracy in all cases.
翻译:为了抵制对抗性攻击算法,提出了各种防御模型,但现有的对抗性强力评价方法总是高估了这些模型的对抗性强力(即没有接近较弱的强力约束 ) 。 为解决这一问题,本文件首先使用Decupul Space 方法将分类器分为两个部分: 非线性和线性。 本文在此基础上界定了原始示例(及其空间,即代表空间)的表示矢量,并使用绝对分类边界初始化(ACBI) 迭接优化来获得更好的攻击起点( 即从此点攻击可以更快接近较弱的强力约束 ) 。 特别是, 本文将ACBI 应用于近50个广泛使用的防御模型( 包括8个结构 ) 。 实验结果表明,ACBI 在所有案例中都取得了较弱的稳健性精确度。