A quasi-score linearity test for continuous and count network autoregressive models is developed. We establish the asymptotic distribution of the test when the network dimension is fixed or increasing, under the null hypothesis of linearity and Pitman's local alternatives. When the parameters are identifiable, the test statistic approximates a chi-square and noncentral chi-square asymptotic distribution, respectively. These results still hold true when the parameters tested belong to the boundary of their space. When we deal with non-identifiable parameters, a suitable test is proposed and its asymptotic distribution is established when the network dimension is fixed. Since, in general, critical values of such test cannot be tabulated, the empirical computation of the p-values is implemented using a feasible bound. Bootstrap approximations are also provided. Moreover, consistency and asymptotic normality of the quasi maximum likelihood estimator is established for continuous and count nonlinear network autoregressions, under standard smoothness conditions. A simulation study and two data examples complement this work.
翻译:为连续和计数网络自动递减模型开发了准极线性线性测试。 在网络尺寸固定或增加时,我们根据线性无效假设和Pitman的本地替代物来确定测试的无症状分布。 当参数可以识别时, 测试统计数据分别接近于 chi- square 和非centr chi- square 无症状分布。 当所测试的参数属于其空间的边界时, 这些结果仍然正确。 当我们处理非识别参数时, 提出适当的测试, 并在网络尺寸固定时确定测试的无症状分布。 由于一般而言, 这种测试的关键值无法进行列表, 对 p- value 进行实验性计算时使用可行的约束。 也提供了“ 诱导器” 的近似值。 此外, 在标准平滑度条件下, 为连续和计数非线性网络自动递增设定了准概率的一致性和无症状常态性。 模拟研究和两个数据示例补充了这项工作。