The winner determination problems of many attractive multi-winner voting rules are NP-complete. However, they often admit polynomial-time algorithms when restricting inputs to be single-peaked. Commonly, such algorithms employ dynamic programming along the underlying axis. We introduce a new technique: carefully chosen integer linear programming (IP) formulations for certain voting problems admit an LP relaxation which is totally unimodular if preferences are single-peaked, and which thus admits an integral optimal solution. This technique gives efficient algorithms for finding optimal committees under Proportional Approval Voting (PAV) and the Chamberlin--Courant rule with single-peaked preferences, as well as for certain OWA-based rules. For PAV, this is the first technique able to efficiently find an optimal committee when preferences are single-peaked. An advantage of our approach is that no special-purpose algorithm needs to be used to exploit structure in the input preferences: any standard IP solver will terminate in the first iteration if the input is single-peaked, and will continue to work otherwise.
翻译:许多有吸引力的多赢者投票规则的获胜者确定问题都是NP-完成的。 但是,在限制投入时,它们通常会接受单比值算法。 通常, 此类算法会沿基本轴进行动态编程。 我们引入了一种新的技术: 对某些投票问题精心选择的整数线性编程(IP)配方可以接受完全单一的LP放松, 如果偏好是单比值, 从而承认一个整体最佳解决方案。 这种技术会提供有效的算法, 在比例批准投票(PAV)下找到最佳委员会, 和带有单比值偏好的Capallin- Courant 规则, 以及某些以OWA为基础的规则。 对于PAV, 这是在优惠是单比值时能够有效找到最佳委员会的第一个方法。 我们方法的一个优点是, 不需要任何特殊目的的算法来利用投入偏好的结构: 如果输入是单比值, 任何标准的 IP 解决器都会在第一个试算法中终止, 并且会继续以其他方式工作 。