Let $P$ be a set of $n$ points in the plane where each point $p$ of $P$ is associated with a radius $r_p>0$.The transmission graph $G=(P,E)$ of $P$ is defined as the directed graph such that $E$ contains an edge from $p$ to $q$ if and only if $|pq|\leq r_p$ for any two points $p$ and $q$ in $P$, where $|pq|$ denotes the Euclidean distance between $p$ and $q$. In this paper, we present a data structure of size $O(n^{5/3})$ such that for any two points in $P$, we can check in $O(n^{2/3})$ time if there is a path in $G$ between the two points. This is the first data structure for answering reachability queries whose performance depends only on $n$ but not on the number of edges.
翻译:当每点一美元一美元一美元一美元半径一美元时,就让美元成为平面上一套美元点数。 传输图$G=(P,E)美元一美元一美元为指示图表的定义是,如果而且只有当每点一美元以美元计,两点以美元计,两美元以美元计,美元以美元计,美元以美元计,美元以美元计,美元为美元,美元美元为美元,美元为美元。在本文件中,我们提出了一个以美元计值的数据结构。对于以美元计值的任何两点,只要在两点之间有以美元计的路径,我们可以用美元计时间。这是回答可达查询的第一个数据结构,其性能仅取决于美元,而不取决于边缘数。