Applying an image processing algorithm independently to each video frame often leads to temporal inconsistency in the resulting video. To address this issue, we present a novel and general approach for blind video temporal consistency. Our method is only trained on a pair of original and processed videos directly instead of a large dataset. Unlike most previous methods that enforce temporal consistency with optical flow, we show that temporal consistency can be achieved by training a convolutional neural network on a video with Deep Video Prior (DVP). Moreover, a carefully designed iteratively reweighted training strategy is proposed to address the challenging multimodal inconsistency problem. We demonstrate the effectiveness of our approach on 7 computer vision tasks on videos. Extensive quantitative and perceptual experiments show that our approach obtains superior performance than state-of-the-art methods on blind video temporal consistency. We further extend DVP to video propagation and demonstrate its effectiveness in propagating three different types of information (color, artistic style, and object segmentation). A progressive propagation strategy with pseudo labels is also proposed to enhance DVP's performance on video propagation. Our source codes are publicly available at https://github.com/ChenyangLEI/deep-video-prior.
翻译:单独对每个视频框架应用图像处理算法,往往会导致产生视频时的时间不一致。为了解决这一问题,我们提出了一个关于盲视视频时间一致性的新颖和一般方法。我们的方法只是直接用一对原始和经过处理的视频来培训,而不是用大数据集来直接培训。与以往大多数与光学流保持时间一致性的方法不同的是,我们表明,通过用深视频前(DVP)的视频来培训进化神经网络,可以实现时间一致性。此外,还提出了一项精心设计的迭代加权培训战略,以解决具有挑战性的多式联运不一致问题。我们展示了我们在视频7个计算机视觉任务上的做法的有效性。广泛的定量和感知性实验表明,我们的方法在盲视像时间一致性方面获得了优于最先进的方法。我们进一步将DVP扩大到视频传播,并展示其在传播三种不同类型的信息(彩色、艺术风格和对象分割)方面的有效性。还提出了带有假标签的渐进传播战略,以加强DVP在视频传播方面的性能。我们的源代码在https://github.com/ChenangLE/I/Iep可以公开查阅。