A common shortcoming of vibration-based damage localization techniques is that localized damages, i.e. small cracks, have a limited influence on the spectral characteristics of a structure. In contrast, even the smallest of defects, under particular loading conditions, cause localized strain concentrations with predictable spatial configuration. However, the effect of a small defect on strain decays quickly with distance from the defect, making strain-based localization rather challenging. In this work, an attempt is made to approximate, in a fully data-driven manner, the posterior distribution of a crack location, given arbitrary dynamic strain measurements at arbitrary discrete locations on a structure. The proposed technique leverages Graph Neural Networks (GNNs) and recent developments in scalable learning for Bayesian neural networks. The technique is demonstrated on the problem of inferring the position of an unknown crack via patterns of dynamic strain field measurements at discrete locations. The dataset consists of simulations of a hollow tube under random time-dependent excitations with randomly sampled crack geometry and orientation.


翻译:以振动为基础的损害定位技术的一个常见缺点是局部损害,即小裂缝,对结构的光谱特性影响有限,相比之下,即使是最小的缺陷,在特定装载条件下,也会导致可预见空间配置的局部菌株浓度;然而,小缺陷对菌株衰减的影响,与缺陷相距很远,使基于菌株的局部化变得相当具有挑战性。在这项工作中,试图以完全以数据驱动的方式对裂缝位置的后方分布进行近似,因为对结构的任意离散地点进行了任意的动态强度测量。拟议的技术杠杆图神经网络(GNN)和Bayesian神经网络可扩展学习的最新发展。该技术的证明是通过离散地点的动态压力场测量模式推断出未知裂痕位置的问题。数据集包括随机根据随机根据时间进行的抽查,对空管进行模拟,并有随机抽样的裂缝测量和定向。

0
下载
关闭预览

相关内容

【AAAI2021】Graph Diffusion Network提升交通流量预测精度
专知会员服务
54+阅读 · 2021年1月21日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
156+阅读 · 2020年5月26日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
人工智能 | 国际会议信息6条
Call4Papers
5+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
19+阅读 · 2020年7月13日
Arxiv
27+阅读 · 2020年6月19日
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
Arxiv
7+阅读 · 2019年6月20日
Arxiv
10+阅读 · 2018年2月4日
VIP会员
相关VIP内容
【AAAI2021】Graph Diffusion Network提升交通流量预测精度
专知会员服务
54+阅读 · 2021年1月21日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
156+阅读 · 2020年5月26日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
人工智能 | 国际会议信息6条
Call4Papers
5+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
相关论文
Top
微信扫码咨询专知VIP会员