While VideoQA Transformer models demonstrate competitive performance on standard benchmarks, the reasons behind their success remain unclear. Do these models jointly capture and leverage the rich multimodal structures and dynamics from video and text? Or are they merely exploiting shortcuts to achieve high scores? We analyze this with $\textit{QUAG}$ (QUadrant AveraGe), a lightweight and non-parametric probe that systematically ablates the model's coupled multimodal understanding during inference. Surprisingly, QUAG reveals that the models manage to maintain high performance even when injected with multimodal sub-optimality. Additionally, even after replacing self-attention in multimodal fusion blocks with "QUAG-attention", a simplistic and less-expressive variant of self-attention, the models maintain high performance. This means that current VideoQA benchmarks and their metrics do not penalize shortcuts that discount joint multimodal understanding. Motivated by this, we propose the $\textit{CLAVI}$ (Counterfactual in LAnguage and VIdeo) benchmark, a diagnostic dataset for benchmarking coupled multimodal understanding in VideoQA through counterfactuals. CLAVI consists of temporal questions and videos that are augmented to curate balanced counterfactuals in language and video domains. Hence, it incentivizes, and identifies the reliability of learnt multimodal representations. We evaluate CLAVI and find that models achieve high performance on multimodal shortcut instances, but have very poor performance on the counterfactuals. Hence, we position CLAVI as a litmus test to identify, diagnose and improve the sub-optimality of learnt multimodal VideoQA representations which the current benchmarks are unable to assess.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员