Bilevel programming has recently received attention in the literature, due to its wide range of applications, including reinforcement learning and hyper-parameter optimization. However, it is widely assumed that the underlying bilevel optimization problem is solved either by a single machine or in the case of multiple machines connected in a star-shaped network, i.e., federated learning setting. The latter approach suffers from a high communication cost on the central node (e.g., parameter server) and exhibits privacy vulnerabilities. Hence, it is of interest to develop methods that solve bilevel optimization problems in a communication-efficient decentralized manner. To that end, this paper introduces a penalty function based decentralized algorithm with theoretical guarantees for this class of optimization problems. Specifically, a distributed alternating gradient-type algorithm for solving consensus bilevel programming over a decentralized network is developed. A key feature of the proposed algorithm is to estimate the hyper-gradient of the penalty function via decentralized computation of matrix-vector products and few vector communications, which is then integrated within an alternating algorithm to obtain finite-time convergence analysis under different convexity assumptions. Our theoretical result highlights improvements in the iteration complexity of decentralized bilevel optimization, all while making efficient use of vector communication. Empirical results on both synthetic and real datasets demonstrate that the proposed method performs well in real-world settings.
翻译:暂无翻译