Shared-account Cross-domain Sequential Recommendation (SCSR) is an emerging yet challenging task that simultaneously considers the shared-account and cross-domain characteristics in the sequential recommendation. Existing works on SCSR are mainly based on Recurrent Neural Network (RNN) and Graph Neural Network (GNN) but they ignore the fact that although multiple users share a single account, it is mainly occupied by one user at a time. This observation motivates us to learn a more accurate user-specific account representation by attentively focusing on its recent behaviors. Furthermore, though existing works endow lower weights to irrelevant interactions, they may still dilute the domain information and impede the cross-domain recommendation. To address the above issues, we propose a reinforcement learning-based solution, namely RL-ISN, which consists of a basic cross-domain recommender and a reinforcement learning-based domain filter. Specifically, to model the account representation in the shared-account scenario, the basic recommender first clusters users' mixed behaviors as latent users, and then leverages an attention model over them to conduct user identification. To reduce the impact of irrelevant domain information, we formulate the domain filter as a hierarchical reinforcement learning task, where a high-level task is utilized to decide whether to revise the whole transferred sequence or not, and if it does, a low-level task is further performed to determine whether to remove each interaction within it or not. To evaluate the performance of our solution, we conduct extensive experiments on two real-world datasets, and the experimental results demonstrate the superiority of our RL-ISN method compared with the state-of-the-art recommendation methods.


翻译:共享账户交叉序列建议(SCSR)是一项新兴但具有挑战性的任务,它既考虑到相继建议中的共享账户和跨域特性,又同时考虑相继建议中的共享账户和跨域特性。关于 SSR的现有工作主要基于经常性神经网络(RNN)和图形神经网络(GNN),但忽视了一个事实,即虽然多个用户共享一个单一账户,但该账户主要同时被一个用户占用。这一观察促使我们通过关注其最近的行为,学习一个更准确的用户特定账户代表。此外,尽管现有工作减少了不相关互动的份量,但它们仍然可能淡化域信息,阻碍跨域建议。为了解决上述问题,我们建议加强基于学习的解决方案,即 RL-ISN, 即由基本的跨域推荐人和强化基于学习的域过滤器组成。具体来说,为了模拟共同账户情景中的账户代表,基本推荐人首先将用户的混合行为作为潜在用户,然后利用关注模式对用户进行识别。为了减少不相关域信息的影响,并阻碍跨域解决方案的建议。为了解决上述问题,我们提出的基于基于基于学习的学习的学习基础的高级任务,我们是否在上等级上,我们运用了整个任务排序中进行的实验,我们是否使用了一个层次上,我们所执行的层次上,我们所执行的实验,我们所执行的一项任务,我们是否使用了一种等级上的一项任务,我们所执行的等级的等级,我们所完成一项任务,我们所执行的等级的等级的等级的等级的等级,我们所执行的一项任务,我们所完成一项任务,我们所完成一项任务,我们所执行的等级的等级的等级的等级的等级的等级的等级的等级的等级的等级的等级的等级的等级的等级的等级的等级的等级的等级的等级的等级的等级的等级,我们是否在一项任务,我们决定了一项任务,我们是否在一项任务的等级的等级的等级的等级的等级的等级的等级的等级的等级的等级的等级的等级的等级的等级的等级的等级的等级的等级的等级的等级的等级的等级的等级的等级的等级的等级的等级的等级的等级的等级的等级的等级的等级的等级的等级的等级的等级的等级的等级的等级的等级的等级的等级的等级的等级的等级的等级的等级的等级的

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关VIP内容
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员