The sheaf-function correspondence identifies the group of constructible functions on a real analytic manifold $M$ with the Grothendieck group of constructible sheaves on $M$ . When $M$ is a finite dimensional real vector space, Kashiwara-Schapira have recently introduced the convolution distance between sheaves of $\textbf{k}$-vector spaces on $M$ . In this paper, we characterize distances on the group of constructible functions on a real finite dimensional vector space that can be controlled by the convolution distance through the sheaf-function correspondence. Our main result asserts that such distances are almost trivial: they vanish as soon as two constructible functions have the same Euler integral.
翻译:树叶功能函文确定了与Grothendieeck的可建树叶架群在实际分析方块上的可建功能组($M美元)与Grothendieeck的可建树叶组($M美元)。当$M美元是一个有限的维向量空间时,Kashiwara-Schapira最近采用了以$\textbf{k}$-矢量空间在$M美元上的变迁距离。在本文中,我们描述可建函数组在可建方块矢量空间上的距离,可以通过堆叶功能通信的变迁距离加以控制。我们的主要结果表明,这种距离几乎微不足道:当两个可建的功能具有相同的 Euler 组成部分时,它们就会消失。