项目名称: 通过晶格严重畸变和电畴精细调控探索BiFeO3等材料的多铁和半导体性能

项目编号: No.51472118

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 一般工业技术

项目作者: 袁国亮

作者单位: 南京理工大学

项目金额: 83万元

中文摘要: 本项目拟通过诱导BiFeO3等多铁材料的晶格严重畸变、通过铁电畴精细结构设计,发现现有铁电相之外的新铁电相和相变,探索和优化其多铁和半导体性能。 (1) 通过外延应力或者元素掺杂显著改变BiFeO3的晶格和能带结构, 发现和研究新的铁电相或压电准同型相,研究新铁电相的(反)铁磁和磁电耦合效应;通过外力在BiFeO3薄膜中诱导非均匀应变,研究其与铁电极化的耦合关系,即挠曲电效应。 (2) 研究具有单一、有序排列铁电畴的薄膜,阐明BiFeO3新相或准同型相中的铁电畴精细结构,通过人工设计特定铁电畴精细结构优化多铁效应;研究BiFeO3的涡旋畴及畴壁电导特征,通过铁电畴精细结构调控薄膜的半导体性质,制备铁电光伏原型器件单元。   多铁和半导体在BiFeO3载体中既相互联系、又相对独立,通过晶格严重畸变和畴精细结构调控多铁和半导体性能,将为新型多功能电子元器件奠定材料基础。

中文关键词: 多铁性材料;铁电薄膜;电输运;磁电耦合;压电材料

英文摘要: In this project, we will find and study new ferroelectric phase and its phase transitions through introducing serious distortion of cyrstal lattice in BiFeO3 and its derivatives, and then we will imporve their multiferroic and semiconductive properties through designing fine domain structure. (1) We will introduce serious crystal lattice distortion for new ferroelectric phase, design new morphotropic phase boundaries for better piezoelectrics, and study (anti-)ferromagnetism for higher magnetoelectric coupling. Furthermore, we will study the nonlinear coupling between ferroelectric polarization and inhomogenous strain, i.e. flexoelectric effect. (2) We will design, grow and study the BiFeO3 films with uniform domain or arranged domains, clarify all kinds of fine domain structures in the new single ferroelectric phase or in mixed phases with morphotropic phase boundaries, and study the vortex domain and its abnormal conductive traits. Furthermore, we will adjust their energy band through designing special fine domain structure, improve its piezoelectric or conductive traits, and finally manipulate the resistive switching effect or improve the photovoltaic effect. In a word, we will improve the multiferroic or semiconductive effect of BiFeO3 or its derivatives, through optimizing their crystal lattice or fine domain structure. If so, this project will create a new start for new electronic devices.

英文关键词: multiferroic materials;ferroelectric film;electronic transport;magnetoelectric coupling;piezoelectric materials

成为VIP会员查看完整内容
0

相关内容

【NeurIPS 2021】实例依赖的偏标记学习
专知会员服务
10+阅读 · 2021年11月28日
专知会员服务
14+阅读 · 2021年8月2日
专知会员服务
31+阅读 · 2021年5月7日
【CVPR2021】通道注意力的高效移动网络设计
专知会员服务
18+阅读 · 2021年4月27日
专知会员服务
21+阅读 · 2021年3月9日
专知会员服务
28+阅读 · 2020年8月8日
性能大幅提升!消除图像复原中的“misalignment”
极市平台
1+阅读 · 2021年12月29日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Memory-Gated Recurrent Networks
Arxiv
12+阅读 · 2020年12月24日
Arxiv
15+阅读 · 2020年2月6日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关VIP内容
【NeurIPS 2021】实例依赖的偏标记学习
专知会员服务
10+阅读 · 2021年11月28日
专知会员服务
14+阅读 · 2021年8月2日
专知会员服务
31+阅读 · 2021年5月7日
【CVPR2021】通道注意力的高效移动网络设计
专知会员服务
18+阅读 · 2021年4月27日
专知会员服务
21+阅读 · 2021年3月9日
专知会员服务
28+阅读 · 2020年8月8日
相关资讯
性能大幅提升!消除图像复原中的“misalignment”
极市平台
1+阅读 · 2021年12月29日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员