The paper explores the relevance of the Text-To-Text Transfer Transformer language model (T5) for Polish (plT5) to the task of intrinsic and extrinsic keyword extraction from short text passages. The evaluation is carried out on the new Polish Open Science Metadata Corpus (POSMAC), which is released with this paper: a collection of 216,214 abstracts of scientific publications compiled in the CURLICAT project. We compare the results obtained by four different methods, i.e. plT5kw, extremeText, TermoPL, KeyBERT and conclude that the plT5kw model yields particularly promising results for both frequent and sparsely represented keywords. Furthermore, a plT5kw keyword generation model trained on the POSMAC also seems to produce highly useful results in cross-domain text labelling scenarios. We discuss the performance of the model on news stories and phone-based dialog transcripts which represent text genres and domains extrinsic to the dataset of scientific abstracts. Finally, we also attempt to characterize the challenges of evaluating a text-to-text model on both intrinsic and extrinsic keyword extraction.
翻译:本文探讨了波兰的文本到文字转换变换语言模式(T5)与从短短文本段落中提取内在和外源关键词的任务的相关性;对波兰新的开放科学元数据公司(POSMAC)进行了评价,并随本文件发布:在CURLICAT项目中汇编了216 214份科学出版物摘要;我们比较了以四种不同方法,即plT5kw、triorText、TermoPL、KeyBERT取得的结果,并得出结论认为,plT5kw模型对经常和很少代表的关键词都产生了特别有希望的结果;此外,在POSMACS上培训的plT5kw关键词生成模型似乎也产生了非常有用的跨主题文本标签设想方案的结果;我们讨论了新闻报道模型和电话对话记录的工作表现,这些模式代表了文本的gens和域与科学摘要的数据集的外源和域。最后,我们还试图说明评价内在和极端关键词提取的文本模型的挑战。