We introduce a class of algorithms for constructing Fourier representations of Gaussian processes in $1$ dimension that are valid over ranges of hyperparameter values. The scaling and frequencies of the Fourier basis functions are evaluated numerically via generalized Gaussian quadratures. The representations introduced allow for $O(N\log{N} + m^3)$ inference via the non-uniform FFT where $N$ is the number of data points and $m$ is the number of basis functions. Numerical results are provided for Mat\'ern kernels with $\nu \in [3/2, 7/2]$ and $\rho \in [0.1, 0.5]$. The algorithms of this paper generalize mathematically to higher dimensions, though they suffer from the standard curse of dimensionality.
翻译:我们引入了一类算法,用于用1美元维度构建高斯过程的Fourier表示法,该算法适用于超参数值范围。Fourier基函数的缩放和频率通过通用高斯方形进行数字评估。引入的算法允许通过非统一的FFT得出$O(N\log{N}+m ⁇ 3)$的推论,其中,N美元是数据点数,$美元是基函数数。提供了以[3.2、7/2]美元和$\rho =[0.1、0.5]美元的马特内核的数值结果。本文的算法从数学角度将数值概括到更高的维度,尽管它们受到标准维度的诅咒。