We introduce a class of algorithms for constructing Fourier representations of Gaussian processes in $1$ dimension that are valid over ranges of hyperparameter values. The scaling and frequencies of the Fourier basis functions are evaluated numerically via generalized Gaussian quadratures. The representations introduced allow for $O(N\log{N} + m^3)$ inference via the non-uniform FFT where $N$ is the number of data points and $m$ is the number of basis functions. Numerical results are provided for Mat\'ern kernels with $\nu \in [3/2, 7/2]$ and $\rho \in [0.1, 0.5]$. The algorithms of this paper generalize mathematically to higher dimensions, though they suffer from the standard curse of dimensionality.


翻译:我们引入了一类算法,用于用1美元维度构建高斯过程的Fourier表示法,该算法适用于超参数值范围。Fourier基函数的缩放和频率通过通用高斯方形进行数字评估。引入的算法允许通过非统一的FFT得出$O(N\log{N}+m ⁇ 3)$的推论,其中,N美元是数据点数,$美元是基函数数。提供了以[3.2、7/2]美元和$\rho =[0.1、0.5]美元的马特内核的数值结果。本文的算法从数学角度将数值概括到更高的维度,尽管它们受到标准维度的诅咒。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Marginalised Gaussian Processes with Nested Sampling
Arxiv
0+阅读 · 2021年11月19日
Arxiv
0+阅读 · 2021年11月19日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员