We discuss basic concepts of convolutional neural networks (CNNs) and outline uses in manufacturing. We begin by discussing how different types of data objects commonly encountered in manufacturing (e.g., time series, images, micrographs, videos, spectra, molecular structures) can be represented in a flexible manner using tensors and graphs. We then discuss how CNNs use convolution operations to extract informative features (e.g., geometric patterns and textures) from the such representations to predict emergent properties and phenomena and/or to identify anomalies. We also discuss how CNNs can exploit color as a key source of information, which enables the use of modern computer vision hardware (e.g., infrared, thermal, and hyperspectral cameras). We illustrate the concepts using diverse case studies arising in spectral analysis, molecule design, sensor design, image-based control, and multivariate process monitoring.
翻译:我们讨论了革命神经网络(CNNs)的基本概念和制造中的用途,我们首先讨论了制造中常见的不同类型数据对象(例如时间序列、图像、显微镜、视频、光谱、分子结构)如何以灵活的方式使用高压和图解来表达,然后讨论了CNNs如何利用变动操作从这种表述中提取信息特征(例如几何模式和纹理),以预测突发的特性和现象和/或查明异常现象。我们还讨论了CNNs如何利用彩色作为关键信息来源,使现代计算机视觉硬件(例如红外、热和超光谱照相机)得以使用。我们介绍了在光谱分析、分子设计、传感器设计、图像控制以及多变过程监测中产生的各种案例研究的概念。