We study a class of algorithms for solving bilevel optimization problems in both stochastic and deterministic settings when the inner-level objective is strongly convex. Specifically, we consider algorithms based on inexact implicit differentiation and we exploit a warm-start strategy to amortize the estimation of the exact gradient. We then introduce a unified theoretical framework inspired by the study of singularly perturbed systems (Habets, 1974) to analyze such amortized algorithms. By using this framework, our analysis shows these algorithms to match the computational complexity of oracle methods that have access to an unbiased estimate of the gradient, thus outperforming many existing results for bilevel optimization. We illustrate these findings on synthetic experiments and demonstrate the efficiency of these algorithms on hyper-parameter optimization experiments involving several thousands of variables.
翻译:我们研究了一系列算法,在内层目标十分鲜明时,解决两层优化问题。具体地说,我们考虑基于不确切的隐含差异的算法,并运用一个温暖的启动战略来对精确的梯度进行摊合。然后,我们根据对奇特扰动的系统的研究(1974年,哈贝茨)引入一个统一的理论框架来分析这种摊合的算法。我们的分析利用这个框架,表明这些算法与能够获取不偏倚梯度估计的奥克莱格方法的计算复杂性相匹配,从而超过了现有的许多双层优化结果。我们对这些合成实验的研究结果进行了说明,并展示了这些算法在涉及数千个变量的超参数优化实验中的效率。