We introduce an explorative active learning (AL) algorithm based on Gaussian process regression and marginalized graph kernel (GPR-MGK) to explore chemical space with minimum cost. Using high-throughput molecular dynamics simulation to generate data and graph neural network (GNN) to predict, we constructed an active learning molecular simulation framework for thermodynamic property prediction. In specific, targeting 251,728 alkane molecules consisting of 4 to 19 carbon atoms and their liquid physical properties: densities, heat capacities, and vaporization enthalpies, we use the AL algorithm to select the most informative molecules to represent the chemical space. Validation of computational and experimental test sets shows that only 313 (0.124\% of the total) molecules were sufficient to train an accurate GNN model with $\rm R^2 > 0.99$ for computational test sets and $\rm R^2 > 0.94$ for experimental test sets. We highlight two advantages of the presented AL algorithm: compatibility with high-throughput data generation and reliable uncertainty quantification.
翻译:我们采用了基于高斯进程回归和边缘图形内核(GPR-MGK)的探索积极学习算法(AL),以以最低成本探索化学空间。我们利用高通量分子动态模拟来生成数据和图形神经网络(GNN)进行预测,我们为热动力特性预测建立了一个积极的学习分子模拟框架。具体地说,我们针对由4至19个碳原子组成的251,728 烷分子及其液体物理特性:密度、热能和蒸发式内分泌,我们使用AL算法来选择最能反映化学空间的信息分子。对计算和实验测试组的验证表明,只有313个(0.124 ⁇ )分子足以用$rm R%2 > 0.99美元来培训精确的GNN模型,用于计算测试组,0.949美元2 R%2 > 用于实验测试组。我们强调所提出的AL算法的两个优点:与高通量数据的生成和可靠的不确定性量化。