We present a new general-purpose algorithm for learning classes of $[0,1]$-valued functions in a generalization of the prediction model, and prove a general upper bound on the expected absolute error of this algorithm in terms of a scale-sensitive generalization of the Vapnik dimension proposed by Alon, Ben-David, Cesa-Bianchi and Haussler. We give lower bounds implying that our upper bounds cannot be improved by more than a constant factor in general. We apply this result, together with techniques due to Haussler and to Benedek and Itai, to obtain new upper bounds on packing numbers in terms of this scale-sensitive notion of dimension. Using a different technique, we obtain new bounds on packing numbers in terms of Kearns and Schapire's fat-shattering function. We show how to apply both packing bounds to obtain improved general bounds on the sample complexity of agnostic learning. For each $\epsilon > 0$, we establish weaker sufficient and stronger necessary conditions for a class of $[0,1]$-valued functions to be agnostically learnable to within $\epsilon$, and to be an $\epsilon$-uniform Glivenko-Cantelli class. This is a manuscript that was accepted by JCSS, together with a correction.
翻译:我们提出了一种新的通用算法,用于学习在预测模型的一般化条件下的类别为$[0,1]$的函数,并在Alon、Ben-David、Cesa-Bianchi和Haussler提出的尺度敏感Vapnik维度的基础上,证明了该算法的期望绝对误差的一般上界。我们给出了下界,这表明我们的上界在一般情况下不能被更多的常量因子改进。我们将这个结果与Haussler和Benedek Itai的技术相结合,以用这个尺度敏感的维度概念来获得新的打包数的上界。使用不同的技术,我们用Kearns和Schapire的fat-shattering函数得到了新的打包数界。我们展示了如何应用这两个打包界来获得关于零知识学习样本复杂度的改进的一般界。对于每个$\epsilon>0$,我们建立了一个类别的更弱的充分和更强的必要条件,这个类别的$[0,1]$值函数是在$\epsilon$内可被零知识学习的,并且是一个$\epsilon$一致的Glivenko-Cantelli类别。这是一个被JCSS接受的手稿,连同一篇纠正文章。