We present a new general-purpose algorithm for learning classes of $[0,1]$-valued functions in a generalization of the prediction model, and prove a general upper bound on the expected absolute error of this algorithm in terms of a scale-sensitive generalization of the Vapnik dimension proposed by Alon, Ben-David, Cesa-Bianchi and Haussler. We give lower bounds implying that our upper bounds cannot be improved by more than a constant factor in general. We apply this result, together with techniques due to Haussler and to Benedek and Itai, to obtain new upper bounds on packing numbers in terms of this scale-sensitive notion of dimension. Using a different technique, we obtain new bounds on packing numbers in terms of Kearns and Schapire's fat-shattering function. We show how to apply both packing bounds to obtain improved general bounds on the sample complexity of agnostic learning. For each $\epsilon > 0$, we establish weaker sufficient and stronger necessary conditions for a class of $[0,1]$-valued functions to be agnostically learnable to within $\epsilon$, and to be an $\epsilon$-uniform Glivenko-Cantelli class. This is a manuscript that was accepted by JCSS, together with a correction.


翻译:我们提出了一种新的通用算法,用于学习在预测模型的一般化条件下的类别为$[0,1]$的函数,并在Alon、Ben-David、Cesa-Bianchi和Haussler提出的尺度敏感Vapnik维度的基础上,证明了该算法的期望绝对误差的一般上界。我们给出了下界,这表明我们的上界在一般情况下不能被更多的常量因子改进。我们将这个结果与Haussler和Benedek Itai的技术相结合,以用这个尺度敏感的维度概念来获得新的打包数的上界。使用不同的技术,我们用Kearns和Schapire的fat-shattering函数得到了新的打包数界。我们展示了如何应用这两个打包界来获得关于零知识学习样本复杂度的改进的一般界。对于每个$\epsilon>0$,我们建立了一个类别的更弱的充分和更强的必要条件,这个类别的$[0,1]$值函数是在$\epsilon$内可被零知识学习的,并且是一个$\epsilon$一致的Glivenko-Cantelli类别。这是一个被JCSS接受的手稿,连同一篇纠正文章。

0
下载
关闭预览

相关内容

【干货书】贝叶斯推理决策,195页pdf
专知会员服务
84+阅读 · 2021年12月11日
专知会员服务
50+阅读 · 2020年12月14日
【ICML 2020 】小样本学习即领域迁移
专知会员服务
77+阅读 · 2020年6月26日
专知会员服务
158+阅读 · 2020年1月16日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Financial Time Series Representation Learning
Arxiv
10+阅读 · 2020年3月27日
VIP会员
相关VIP内容
【干货书】贝叶斯推理决策,195页pdf
专知会员服务
84+阅读 · 2021年12月11日
专知会员服务
50+阅读 · 2020年12月14日
【ICML 2020 】小样本学习即领域迁移
专知会员服务
77+阅读 · 2020年6月26日
专知会员服务
158+阅读 · 2020年1月16日
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员