We present VAEL, a neuro-symbolic generative model integrating variational autoencoders (VAE) with the reasoning capabilities of probabilistic logic (L) programming. Besides standard latent subsymbolic variables, our model exploits a probabilistic logic program to define a further structured representation, which is used for logical reasoning. The entire process is end-to-end differentiable. Once trained, VAEL can solve new unseen generation tasks by (i) leveraging the previously acquired knowledge encoded in the neural component and (ii) exploiting new logical programs on the structured latent space. Our experiments provide support on the benefits of this neuro-symbolic integration both in terms of task generalization and data efficiency. To the best of our knowledge, this work is the first to propose a general-purpose end-to-end framework integrating probabilistic logic programming into a deep generative model.
翻译:我们展示了VAEL, 这是一种将变异自动编码器(VAE)与概率逻辑(L)编程的推理能力相结合的神经- 共振基因模型。除了标准的潜潜潜亚共振变量外,我们的模型还利用一种概率逻辑程序来定义进一步的结构性表述,用于逻辑推理。整个过程是端到端的不同。经过培训后, VAEL可以通过以下方式解决新的无形生成任务:(一) 利用神经元组成部分编码的先前获得的知识,以及(二) 在结构化的潜在空间上开发新的逻辑程序。我们的实验为这种神经-共振整合的好处提供了支持,既包括任务化,也包括数据效率。据我们所知,这是第一个将概率逻辑编程纳入深层基因化模型的通用端到端框架。