Learning algorithms are often used in conjunction with expert decision makers in practical scenarios, however this fact is largely ignored when designing these algorithms. In this paper we explore how to learn predictors that can either predict or choose to defer the decision to a downstream expert. Given only samples of the expert's decisions, we give a procedure based on learning a classifier and a rejector and analyze it theoretically. Our approach is based on a novel reduction to cost sensitive learning where we give a consistent surrogate loss for cost sensitive learning that generalizes the cross entropy loss. We show the effectiveness of our approach on a variety of experimental tasks.
翻译:学习算法往往在实际情况下与专家决策者一起使用,但在设计这些算法时,这一事实基本上被忽视。在本文件中,我们探讨了如何学习预测者,这些预测者既可以预测,也可以选择将决定推迟到下游专家作出。根据专家决定的样本,我们给出了一个基于学习分类者和拒绝者的程序,并从理论上加以分析。我们的方法是基于对成本敏感性学习进行新颖的削减,在成本敏感性学习中,我们给出了一致的代谢损失,用于概括交叉加密损失的成本敏感学习。我们展示了我们在各种实验任务上的做法的有效性。