Understanding a complex system of relationships between courses is of great importance for the university's educational mission. This paper is dedicated to the study of course-prerequisite networks (CPNs), where nodes represent courses and directed links represent the formal prerequisite relationships between them. The main goal of CPNs is to model interactions between courses, represent the flow of knowledge in academic curricula, and serve as a key tool for visualizing, analyzing, and optimizing complex curricula. First, we consider several classical centrality measures, discuss their meaning in the context of CPNs, and use them for the identification of important courses. Next, we describe the hierarchical structure of a CPN using the topological stratification of the network. Finally, we perform the interdependence analysis, which allows to quantify the strength of knowledge flow between university divisions and helps to identify the most intradependent, influential, and interdisciplinary areas of study. We discuss how course-prerequisite networks can be used by students, faculty, and administrators for detecting important courses, improving existing and creating new courses, navigating complex curricula, allocating teaching resources, increasing interdisciplinary interactions between departments, revamping curricula, and enhancing the overall students' learning experience. The proposed methodology can be used for the analysis of any CPN, and it is illustrated with a network of courses taught at the California Institute of Technology. The network data analyzed in this paper is publicly available in the GitHub repository.


翻译:理解课程之间复杂关系网络对于推进大学教育使命有着重要意义。本文致力于课程先修关系网络(CPN)的研究,其中节点代表课程,有向链接表示它们之间的正式先修关系。CPN 的主要目标是模拟课程之间的相互作用,代表学术课程中的知识流动,并成为可视化、分析和优化复杂课程的关键工具。首先,我们考虑了几种经典中心性度量,并在CPN的背景下讨论了它们的含义,用于识别重要课程。接着,我们描述了CPN的分层结构,采用了网络的拓扑分层法。最后,我们进行了相互依赖性分析,该分析可用于量化大学部门之间知识流动的强度,并帮助识别最具内部依赖性、影响力和跨学科的研究领域。我们讨论了课程先修关系网络如何被学生、教职员工和管理者用于检测重要课程、改进一个现有的或创建新的课程,导航复杂的课程,分配教学资源,增加部门之间的跨学科交流,全面提升学生的学习体验。所提出的方法可以用于分析任何CPN,并以在加州理工学院教授的课程网络为例进行了阐述。本文所分析的网络数据公开在GitHub存储库中。

0
下载
关闭预览

相关内容

课程是指学校学生所应学习的学科总和及其进程与安排。课程是对教育的目标、教学内容、教学活动方式的规划和设计,是教学计划、教学大纲等诸多方面实施过程的总和。广义的课程是指学校为实现培养目标而选择的教育内容及其进程的总和,它包括学校老师所教授的各门学科和有目的、有计划的教育活动。狭义的课程是指某一门学科。 专知上对国内外最新AI+X的课程进行了收集与索引,涵盖斯坦福大学、CMU、MIT、清华、北大等名校开放课程。
专知会员服务
42+阅读 · 2020年12月18日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
资源|斯坦福课程:深度学习理论!
全球人工智能
17+阅读 · 2017年11月9日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
4+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
12+阅读 · 2022年4月30日
Arxiv
49+阅读 · 2021年5月9日
Arxiv
56+阅读 · 2021年5月3日
Arxiv
24+阅读 · 2021年1月25日
A Comprehensive Survey on Graph Neural Networks
Arxiv
21+阅读 · 2019年1月3日
Arxiv
11+阅读 · 2018年7月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
资源|斯坦福课程:深度学习理论!
全球人工智能
17+阅读 · 2017年11月9日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
4+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员