Consider a Bayesian inference problem where a variable of interest does not take values in a Euclidean space. These "non-standard" data structures are in reality fairly common. They are frequently used in problems involving latent discrete factor models, networks, and domain specific problems such as sequence alignments and reconstructions, pedigrees, and phylogenies. In principle, Bayesian inference should be particularly well-suited in such scenarios, as the Bayesian paradigm provides a principled way to obtain confidence assessment for random variables of any type. However, much of the recent work on making Bayesian analysis more accessible and computationally efficient has focused on inference in Euclidean spaces. In this paper, we introduce Blang, a domain specific language and library aimed at bridging this gap. Blang allows users to perform Bayesian analysis on arbitrary data types while using a declarative syntax similar to BUGS. Blang is augmented with intuitive language additions to create data types of the user's choosing. To perform inference at scale on such arbitrary state spaces, Blang leverages recent advances in sequential Monte Carlo and non-reversible Markov chain Monte Carlo methods.


翻译:原则上, 巴伊西亚的推论应特别适合这样的假设情况, 因为巴伊西亚的范例为获取任意变量的可信度提供了一条原则性语言补充, 以创建用户选择的数据类型。 然而, 最近关于使巴伊西亚分析更便于查阅和计算效率的工作大多侧重于在爱科里德空间的推论。 在本文中,我们引入了Blang,这是旨在弥合这一差距的域名语言和图书馆。 Blanng允许用户在使用类似于BUGS的宣讲性语法的同时,对任意数据类型进行巴伊西亚的分析。 Blange的推论是用不直截了当的语言补充用户选择的数据类型。 在这种任意的州级空间上进行推论, Blang 和 Monteal- Karev- Rest 的连续推进。

0
下载
关闭预览

相关内容

专知会员服务
52+阅读 · 2020年9月7日
自动结构变分推理,Automatic structured variational inference
专知会员服务
38+阅读 · 2020年2月10日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年8月25日
Arxiv
17+阅读 · 2019年3月28日
SepNE: Bringing Separability to Network Embedding
Arxiv
3+阅读 · 2019年2月26日
Arxiv
3+阅读 · 2018年6月18日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员