This article introduces the bpcs R package (Bayesian Paired Comparison in Stan) and the statistical models implemented in the package. This package aims to facilitate the use of Bayesian models for paired comparison data in behavioral research. Bayesian analysis of paired comparison data allows parameter estimation even in conditions where the maximum likelihood does not exist, allows easy extension of paired comparison models, provide straightforward interpretation of the results with credible intervals, have better control of type I error, have more robust evidence towards the null hypothesis, allows propagation of uncertainties, includes prior information, and perform well when handling models with many parameters and latent variables. The bpcs package provides a consistent interface for R users and several functions to evaluate the posterior distribution of all parameters, to estimate the posterior distribution of any contest between items, and to obtain the posterior distribution of the ranks. Three reanalyses of recent studies that used the frequentist Bradley-Terry model are presented. These reanalyses are conducted with the Bayesian models of the bpcs package, and all the code used to fit the models, generate the figures, and the tables are available in the online appendix.


翻译:本篇文章介绍了bpcs R 包件(斯坦的Bayesian Paired比较)和包件中执行的统计模型。包件旨在便利使用Bayesian模型进行行为研究中的配对比较数据。配对比较数据分析允许即使在不存在最大可能性的情况下也进行参数估计,便于扩展配对比较模型,以可信的间隔对结果进行直截了当的解释,对I型错误有更好的控制,对无效假设有更强有力的证据,允许不确定性的传播,包括先前的信息,在处理含有许多参数和潜在变量的模型时运行良好。包件为R用户提供了一个一致的界面,并提供了若干功能,用以评估所有参数的远端分布,估计项目之间任何竞争的后端分布,并获得等级的后端分布。提供了三种最近使用经常使用布拉德利德-Termy模型的研究的重新分析结果。这些重新分析与Bpc软件包的Bayesian模型进行,以及所有用于匹配模型的代码、生成数字和在线附录中的表格。

0
下载
关闭预览

相关内容

两人亲密社交应用,官网: trypair.com/
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
可解释AI(XAI)工具集—DrWhy
专知
25+阅读 · 2019年6月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2018年8月17日
Arxiv
9+阅读 · 2018年3月28日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
可解释AI(XAI)工具集—DrWhy
专知
25+阅读 · 2019年6月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员