In this paper we have presented the effects of path mtu discovery in IPv4 & IPv6 in mathematical, logical and graphical representation. We try to give a mathematical model to the working of path mtu discovery and calculated its behaviour using a transmission of a packet. We analysed the time consumed to transmit a single packet from source to destination in IPv6 network in the presence of PMTUD and similarly in IPv4 network with DF bit 1. Based on our analysis, we concluded that the communication time increases with the varying MTU of the intermediate nodes. Moreover, we formulated the mathematical model to determine the communication delay in a network. Our model shows that the asymptotic lower bound for time taken is $\Omega(n)$ and the asymptotic upper bound is $\Theta(n^2)$, using PMTUD. We have find that the packet drop frequency follows the Bernoulli's trials and which helps to define the success probability of the packet drop frequency, which shows that the probability is higher for packet drop rate for beginning $2\%$ of the total nodes in the path. We further found that $^{n}C_{a}$ possible number of a-combinations without repetitions that can be formed for a particular number of packet drop frequency. The relation between summation (acts as a coefficient in the time wastage equation) of each combination and their frequency resulted in symmetric graph and also mathematical and statistical structures to measure time wastage and its behaviour. This also helps in measuring the possible relative maximum, minimum and average time wastage. We also measured the probability of relative maximum, min and average summation for a given value of packet drop frequency and number of nodes in a path.
翻译:在本文中,我们展示了数学、逻辑和图形演示中 IPv4 & IPv6 中路径 mtu 发现在数学、逻辑和图形中 的 IPv4 和 IPv6 中 路径发现的效果。 我们试图给路径发现工作提供一个数学模型, 并使用一个软件包的传输方式计算其行为。 我们分析了在 PMTUD 和 IPv4 网络中以 DF 位 1 的形式从源端向端传输一个包的时间。 根据我们的分析, 我们得出结论, 中间节点的 MTU 不同 。 此外, 我们制定了数学模型, 以确定网络中的通信延迟。 我们的模型显示, 路径中, 路径中, 路径中的路径中, 路径中, 路径中, 路径中, 路径发现 路径中, 路径中, 路径中 路径中 路径中 路径中 和 时间 时间 中 的 时间, 最小值 和 时间 等值 中, 的 最大 和 时间 的 等值 等值 。 我们还发现, 的 的 平均 和 时间 的 和 的 等值 的 的 等值 和 的 等值中, 的 的 的 的 等值中, 。