In this paper we have presented the effects of path mtu discovery in IPv4 & IPv6 in mathematical, logical and graphical representation. We try to give a mathematical model to the working of path mtu discovery and calculated its behaviour using a transmission of a packet. We analysed the time consumed to transmit a single packet from source to destination in IPv6 network in the presence of PMTUD and similarly in IPv4 network with DF bit 1. Based on our analysis, we concluded that the communication time increases with the varying MTU of the intermediate nodes. Moreover, we formulated the mathematical model to determine the communication delay in a network. Our model shows that the asymptotic lower bound for time taken is $\Omega(n)$ and the asymptotic upper bound is $\Theta(n^2)$, using PMTUD. We have find that the packet drop frequency follows the Bernoulli's trials and which helps to define the success probability of the packet drop frequency, which shows that the probability is higher for packet drop rate for beginning $2\%$ of the total nodes in the path. We further found that $^{n}C_{a}$ possible number of a-combinations without repetitions that can be formed for a particular number of packet drop frequency. The relation between summation (acts as a coefficient in the time wastage equation) of each combination and their frequency resulted in symmetric graph and also mathematical and statistical structures to measure time wastage and its behaviour. This also helps in measuring the possible relative maximum, minimum and average time wastage. We also measured the probability of relative maximum, min and average summation for a given value of packet drop frequency and number of nodes in a path.


翻译:在本文中,我们展示了数学、逻辑和图形演示中 IPv4 & IPv6 中路径 mtu 发现在数学、逻辑和图形中 的 IPv4 和 IPv6 中 路径发现的效果。 我们试图给路径发现工作提供一个数学模型, 并使用一个软件包的传输方式计算其行为。 我们分析了在 PMTUD 和 IPv4 网络中以 DF 位 1 的形式从源端向端传输一个包的时间。 根据我们的分析, 我们得出结论, 中间节点的 MTU 不同 。 此外, 我们制定了数学模型, 以确定网络中的通信延迟。 我们的模型显示, 路径中, 路径中, 路径中的路径中, 路径中, 路径中, 路径中, 路径发现 路径中, 路径中, 路径中 路径中 路径中 路径中 和 时间 时间 中 的 时间, 最小值 和 时间 等值 中, 的 最大 和 时间 的 等值 等值 。 我们还发现, 的 的 平均 和 时间 的 和 的 等值 的 的 等值 和 的 等值中, 的 的 的 的 等值中, 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Phase-aware Speech Enhancement with Deep Complex U-Net
Arxiv
26+阅读 · 2018年2月27日
VIP会员
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员