In this paper, we propose a randomly projected convex clustering model for clustering a collection of $n$ high dimensional data points in $\mathbb{R}^d$ with $K$ hidden clusters. Compared to the convex clustering model for clustering original data with dimension $d$, we prove that, under some mild conditions, the perfect recovery of the cluster membership assignments of the convex clustering model, if exists, can be preserved by the randomly projected convex clustering model with embedding dimension $m = O(\epsilon^{-2}\log(n))$, where $0 < \epsilon < 1$ is some given parameter. We further prove that the embedding dimension can be improved to be $O(\epsilon^{-2}\log(K))$, which is independent of the number of data points. Extensive numerical experiment results will be presented in this paper to demonstrate the robustness and superior performance of the randomly projected convex clustering model. The numerical results presented in this paper also demonstrate that the randomly projected convex clustering model can outperform the randomly projected K-means model in practice.


翻译:本文提出了一种随机投影凸聚类模型,用于聚类在$\mathbb{R}^d$中的$n$个高维数据点,其中隐藏着$K$个聚类。与用$d$维原始数据聚类的凸聚类模型相比,我们证明,在一些温和条件下,如果凸聚类模型的完美恢复存在,那么随机投影凸聚类模型可以通过嵌入维度$m=O(\epsilon^{-2}\log(n))$来保留聚类成员分配的完美恢复,其中$0<\epsilon<1$是某个给定的参数。我们进一步证明,嵌入维度可以改进为$O(\epsilon^{-2}\log(K))$,这与数据点数量无关。本文还将展示大量数值实验结果,以展示随机投影凸聚类模型的稳健性和卓越性能。本文中呈现的数值结果还表明,在实践中,随机投影凸聚类模型可以优于随机投影K均值模型。

0
下载
关闭预览

相关内容

专知会员服务
15+阅读 · 2021年5月21日
专知会员服务
50+阅读 · 2020年12月14日
【SIGIR2020】学习词项区分性,Learning Term Discrimination
专知会员服务
15+阅读 · 2020年4月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
互信息论文笔记
CreateAMind
23+阅读 · 2018年8月23日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月18日
Arxiv
0+阅读 · 2023年5月17日
Arxiv
31+阅读 · 2020年9月21日
VIP会员
相关VIP内容
专知会员服务
15+阅读 · 2021年5月21日
专知会员服务
50+阅读 · 2020年12月14日
【SIGIR2020】学习词项区分性,Learning Term Discrimination
专知会员服务
15+阅读 · 2020年4月28日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
互信息论文笔记
CreateAMind
23+阅读 · 2018年8月23日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员