A large number of scientific studies and engineering problems involve high-dimensional spatiotemporal data with complicated relationships. In this paper, we focus on a type of space-time interaction named \emph{temporal evolution of spatial dependence (TESD)}, which is a zero time-lag spatiotemporal covariance. For this purpose, we propose a novel Bayesian nonparametric method based on non-stationary spatiotemporal Gaussian process (STGP). The classic STGP has a covariance kernel separable in space and time, failed to characterize TESD. More recent works on non-separable STGP treat location and time together as a joint variable, which is unnecessarily inefficient. We generalize STGP (gSTGP) to introduce the time-dependence to the spatial kernel by varying its eigenvalues over time in the Mercer's representation. The resulting non-stationary non-separable covariance model bares a quasi Kronecker sum structure. Finally, a hierarchical Bayesian model for the joint covariance is proposed to allow for full flexibility in learning TESD. A simulation study and a longitudinal neuroimaging analysis on Alzheimer's patients demonstrate that the proposed methodology is (statistically) effective and (computationally) efficient in characterizing TESD. Theoretic properties of gSTGP including posterior contraction (for covariance) are also studied.


翻译:大量科学研究和工程问题涉及具有复杂关系的高度空间时空数据。 在本文中, 我们侧重于一种名为 empph{ 空间依赖(TESD) 的时空互动, 这是一种零时间拉低的时空瞬时共变。 为此, 我们基于非静止的时空工序进程, 提出了一种新型的巴耶斯非参数性非参数性方法。 经典STGP在空间和时间上具有共性内核内核分解的共性内核, 未能给TESD定性。 最近关于不可分离的STGP治疗位置和时间一起作为联合变量的更多工作, 这是不必要效率的。 我们建议将STGP(GP) 普遍化, 引入空间内核内核的时空依赖性, 在Mercer的演示中, 随着时间的推移, 改变其隐性值。 由此产生的非静止的不可分离性内核共性模型暴露了一个准的 Kronecker 和时间结构。 最后, 联合可分离的Bayesian模型是联合可分离的可分离性可变性病人的级模型, 作为联合共变性变的共性变量性变量性变量,, 也提议在全面的神经内核分析中展示中,, 一种模拟的模拟性研究方法,, 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员