While 5G networks are being rolled out, the definition of the potential 5G-Advanced features and the identification of disruptive technologies for 6G systems are being addressed by the scientific and academic communities to tackle the challenges that 2030 communication systems will face, such as terabit-capacity and always-on networks. In this framework, it is globally recognised that Non-Terrestrial Networks (NTN) will play a fundamental role in support to a fully connected world, in which physical, human, and digital domains will converge. In this framework, one of the main challenges that NTN have to address is the provision of the high throughput requested by the new ecosystem. In this paper, we focus on Cell-Free Multiple Input Multiple Output (CF-MIMO) algorithms for NTN. In particular: i) we discuss the architecture design supporting centralised and federated CF-MIMO in NTN, with the latter implementing distributed MIMO algorithms from multiple satellites in the same formation (swarm); ii) propose a novel location-based CF-MIMO algorithm, which does not require Channel State Information (CSI) at the transmitter; and iii) design novel normalisation approaches for federated CF-MIMO in NTN, to cope with the constraints on non-colocated radiating elements. The numerical results substantiate the good performance of the proposed algorithm, also in the presence of non-ideal information.


翻译:虽然正在推出5G网络,但科学和学术界正在探讨5G-高级功能的定义和6G系统破坏性技术的确定问题,以应对2030年通信系统将面临的挑战,如地铁能力和永远联网等2030年通信系统将面临的挑战。在这个框架内,全球都认识到,非地铁网络(NTN)将在支持一个充分连接的世界方面发挥根本作用,在这个世界中,物理、人类和数字领域将汇聚在一起。在这个框架内,NTN必须应对的主要挑战之一是提供新生态系统所要求的高通量。在本文件中,我们侧重于NTN的无细胞多输入多输出算法(CF-MIMO),特别是:(一) 我们讨论支持NTN的中央化和联合化的CF-MIMO的架构设计,后者将采用从同一编造的多颗卫星(swarm)传播的MIMO算法。NC-MIMO的基于位置的算法,这不需要在MICF的交付品中提供频道信息(CSI),并设计SF的正常数字化结果。

0
下载
关闭预览

相关内容

神经张量网络(NTN)用一个双线性张量层代替一个标准的线性神经网络层,它直接关联了多个维度上的两个实体向量。
【如何做研究】How to research ,22页ppt
专知会员服务
108+阅读 · 2021年4月17日
专知会员服务
44+阅读 · 2020年10月31日
专知会员服务
60+阅读 · 2020年3月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Arxiv
12+阅读 · 2018年9月5日
VIP会员
相关VIP内容
【如何做研究】How to research ,22页ppt
专知会员服务
108+阅读 · 2021年4月17日
专知会员服务
44+阅读 · 2020年10月31日
专知会员服务
60+阅读 · 2020年3月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员