We propose a nonparametric bivariate time-varying coefficient model for longitudinal measurements with the occurrence of a terminal event that is subject to right censoring. The time-varying coefficients capture the longitudinal trajectories of covariate effects along with both the followup time and the residual lifetime. The proposed model extends the parametric conditional approach given terminal event time in recent literature, and thus avoids potential model misspecification. We consider a kernel smoothing method for estimating regression coefficients in our model and use cross-validation for bandwidth selection, applying undersmoothing in the final analysis to eliminate the asymptotic bias of the kernel estimator. We show that the kernel estimates are asymptotically normal under mild regularity conditions, and provide an easily computable sandwich variance estimator. We conduct extensive simulations that show desirable performance of the proposed approach, and apply the method to analyzing the medical cost data for patients with end-stage renal disease.
翻译:我们建议采用非对称双差时间差系数模型来进行纵向测量,以发现一个需接受右审查的终端事件。时间差系数可以捕捉同异效应的纵向轨迹以及后续时间和剩余寿命。拟议模型扩展了最近文献中给终端事件设定的时间的参数性有条件方法,从而避免了潜在的模型偏差。我们考虑了一种内核平滑法,用以估计模型中的回归系数,并在选择带宽时使用交叉校验法,在最终分析中采用间滑线,以消除内核估测器的失色偏差。我们表明,在温和正常条件下,内核估计值是静态正常的,并提供易于计算的三明治差异估测器。我们进行了广泛的模拟,以显示拟议方法的可取性能,并运用这一方法分析患有尾端肾病的病人的医疗费用数据。