The paper focuses on pricing European-style options on several underlying assets under the Black-Scholes model represented by a nonstationary partial differential equation. The proposed method combines the Galerkin method with $L^2$-orthogonal sparse grid spline wavelets and the Crank-Nicolson scheme with Rannacher time-stepping. To this end, we construct an orthogonal cubic spline wavelet basis on the interval satisfying homogeneous Dirichlet boundary conditions and design a wavelet basis on the unit cube using the sparse tensor product. The method brings the following advantages. First, the number of basis functions is significantly smaller than for the full grid, which makes it possible to overcome the so-called curse of dimensionality. Second, some matrices involved in the computation are identity matrices, which significantly simplifies and streamlines the algorithm, especially in higher dimensions. Further, we prove that discretization matrices have uniformly bounded condition numbers, even without preconditioning, and that the condition numbers do not depend on the dimension of the problem. Due to the use of cubic spline wavelets, the method is higher-order convergent. Numerical experiments are presented for options on the geometric average.
翻译:本文侧重于在黑雪模式下以非静止部分差异方程式为代表的几种基本资产欧洲式选项的定价。 提议的方法将Galerkin方法与$L2$- orthogin 分散式网格螺旋状状波子和Crank- Nicolson办法与Rannacher时间步调相结合。 为此,我们根据满足均衡的平整式Drichlet边界条件的间隔,在单体立方体上设计一个波段基点。 这种方法带来以下好处。 首先, 基础功能的数量大大小于整个网格, 从而有可能克服所谓的维度诅咒。 第二, 计算中涉及的一些矩阵是身份矩阵, 大大简化和简化了算法, 特别是在更高的尺寸上。 此外, 我们证明离散矩阵具有统一的约束条件号, 即使没有设定先决条件, 并且条件号并不取决于问题的规模。 由于使用立方螺纹波状波状波状, 该方法是更高级的。 用于测量度的地质组合实验。