Using sensor data from multiple modalities presents an opportunity to encode redundant and complementary features that can be useful when one modality is corrupted or noisy. Humans do this everyday, relying on touch and proprioceptive feedback in visually-challenging environments. However, robots might not always know when their sensors are corrupted, as even broken sensors can return valid values. In this work, we introduce the Crossmodal Compensation Model (CCM), which can detect corrupted sensor modalities and compensate for them. CMM is a representation model learned with self-supervision that leverages unimodal reconstruction loss for corruption detection. CCM then discards the corrupted modality and compensates for it with information from the remaining sensors. We show that CCM learns rich state representations that can be used for contact-rich manipulation policies, even when input modalities are corrupted in ways not seen during training time.
翻译:使用来自多种模式的传感器数据为编码在一种模式被腐蚀或吵闹时可能有用的冗余和互补特征提供了机会。 人类每天都这样做,依靠触摸和在视觉挑战环境中自行感知反馈。 然而,机器人可能并不总是知道其传感器何时被腐蚀,因为即使是破碎的传感器也可能返回有效的价值。 在这项工作中,我们引入了跨模式补偿模式(CCM ), 该模式可以检测到腐蚀的传感器模式并给予补偿。 CMM 是一种与自我监督公司共同学习的代议模式,它利用单式重建损失来发现腐败。 CCM 然后丢弃了腐败模式,用其余传感器的信息补偿它。 我们显示,CCM 学会了丰富的州级代表,可以用来实施富于接触的操纵政策,即使投入模式在培训期间没有被看到的方式被腐蚀。