In warehouse and manufacturing environments, manipulation platforms are frequently deployed at conveyor belts to perform pick and place tasks. Because objects on the conveyor belts are moving, robots have limited time to pick them up. This brings the requirement for fast and reliable motion planners that could provide provable real-time planning guarantees, which the existing algorithms do not provide. Besides the planning efficiency, the success of manipulation tasks relies heavily on the accuracy of the perception system which is often noisy, especially if the target objects are perceived from a distance. For fast moving conveyor belts, the robot cannot wait for a perfect estimate before it starts executing its motion. In order to be able to reach the object in time, it must start moving early on (relying on the initial noisy estimates) and adjust its motion on-the-fly in response to the pose updates from perception. We propose a planning framework that meets these requirements by providing provable constant-time planning and replanning guarantees. To this end, we first introduce and formalize a new class of algorithms called Constant-Time Motion Planning algorithms (CTMP) that guarantee to plan in constant time and within a user-defined time bound. We then present our planning framework for grasping objects off a conveyor belt as an instance of the CTMP class of algorithms.


翻译:在仓储和制造环境中,操纵平台常常部署在传送带,以进行摘取和布置任务。由于传送带上的物体正在移动,机器人有有限的时间来接收这些物体。这就要求快速可靠的运动规划者能够提供现成的实时规划保证,而现有的算法无法提供这种保证。除了规划效率外,操纵任务的成功在很大程度上取决于感知系统的准确性,这种感知系统往往很吵闹,特别是目标物体是从远处感觉到的。对于快速移动的传送带,机器人不能在它开始运动之前等待完美的估计。为了能够及时到达该物体,它必须尽早(依靠最初的噪音估计)开始行动,并调整其飞行运动,以回应从感知得到的更新。我们提出一个符合这些要求的规划框架,办法是提供可变的固定时间规划和再规划保证。为了这个目的,我们首先引进并正式了一种新的算法,称为常时移动传送计划算法(CT MP),保证在固定的时间和固定的磁带内规划物体计划。我们目前的规划框架将用户确定的磁带传递。

0
下载
关闭预览

相关内容

FAST:Conference on File and Storage Technologies。 Explanation:文件和存储技术会议。 Publisher:USENIX。 SIT:http://dblp.uni-trier.de/db/conf/fast/
【AAAI2021】对比聚类,Contrastive Clustering
专知会员服务
77+阅读 · 2021年1月30日
【Manning新书】现代Java实战,592页pdf
专知会员服务
99+阅读 · 2020年5月22日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
已删除
将门创投
6+阅读 · 2019年1月11日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Arxiv
1+阅读 · 2021年3月12日
Arxiv
24+阅读 · 2020年3月11日
VIP会员
相关资讯
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
已删除
将门创投
6+阅读 · 2019年1月11日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Top
微信扫码咨询专知VIP会员