We introduce novel convergence results for asynchronous iterations which appear in the analysis of parallel and distributed optimization algorithms. The results are simple to apply and give explicit estimates for how the degree of asynchrony impacts the convergence rates of the iterates. Our results shorten, streamline and strengthen existing convergence proofs for several asynchronous optimization methods, and allow us to establish convergence guarantees for popular algorithms that were thus far lacking a complete theoretical understanding. Specifically, we use our results to derive better iteration complexity bounds for proximal incremental aggregated gradient methods, to provide less conservative analyses of the speedup conditions for asynchronous block-coordinate implementations of Krasnoselskii-Mann iterations, and to quantify the convergence rates for totally asynchronous iterations under various assumptions on communication delays and update rates.
翻译:我们引入了非同步迭代的新趋同结果,这些结果出现在对平行和分布式优化算法的分析中。结果简单易应用,并明确估计无同步程度如何影响迭代的趋同率。我们的结果缩短、精简和加强一些非同步优化方法的现有趋同证据,并使我们能够为迄今缺乏完全理论理解的流行算法建立趋同保证。具体地说,我们利用我们的结果得出了更佳的递增性综合梯度方法的递增复杂性界限,对克拉斯诺塞尔斯基-曼恩迭代法的不同步区块协调执行的加速条件提供了较保守的分析,并量化了在通信延误和更新率的各种假设下完全非同步迭代法的趋同率。