In this work, we address the problem of solving complex collaborative robotic tasks subject to multiple varying parameters. Our approach combines simultaneous policy blending with system identification to create generalized policies that are robust to changes in system parameters. We employ a blending network whose state space relies solely on parameter estimates from a system identification technique. As a result, this blending network learns how to handle parameter changes instead of trying to learn how to solve the task for a generalized parameter set simultaneously. We demonstrate our scheme's ability on a collaborative robot and human itching task in which the human has motor impairments. We then showcase our approach's efficiency with a variety of system identification techniques when compared to standard domain randomization.


翻译:在这项工作中,我们解决了在多种不同参数下解决复杂的协作机器人任务的问题。 我们的方法是同时将政策与系统识别结合起来,以制定与系统参数变化相适应的通用政策。 我们使用一个混合网络,其国家空间完全依赖于系统识别技术的参数估计。 结果,这个混合网络学会了如何处理参数变化,而不是试图学习如何解决同时设定的通用参数的任务。 我们展示了我们的方法在合作机器人和人类切痒任务上的能力,其中人类有运动缺陷。 然后我们展示了我们的方法效率,与标准域随机化相比,我们用各种系统识别技术。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关资讯
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员