We present a novel method for interactive construction and rendering of extremely large molecular scenes, capable of representing multiple biological cells at atomistic detail. Our method is tailored for scenes, which are procedurally constructed, based on a given set of building rules. Rendering of large scenes normally requires the entire scene available in-core, or alternatively, it requires out-of-core management to load data into the memory hierarchy as a part of the rendering loop. Instead of out-of-core memory management, we propose to procedurally generate the scene on-demand on the fly. The key idea is a positional- and view-dependent procedural scene-construction strategy, where only a fraction of the atomistic scene around the camera is available in the GPU memory at any given time. The atomistic detail is populated into a uniform-space partitioning using a grid that covers the entire scene. Most of the grid cells are not filled with geometry, only those are populated that are potentially seen by the camera. The atomistic detail is populated in a compute shader and its representation is connected with acceleration data structures for hardware ray-tracing of modern GPUs. Objects which are far away, where atomistic detail is not perceivable from a given viewpoint, are represented by a triangle mesh mapped with a seamless texture, generated from the rendering of geometry from atomistic detail. The algorithm consists of two pipelines, the construction computes pipeline and the rendering pipeline, which work together to render molecular scenes at an atomistic resolution far beyond the limit of the GPU memory containing trillions of atoms. We demonstrate our technique on multiple models of SARS-CoV-2 and the red blood cell.


翻译:我们提出了一个互动构建和提供极大型分子场景的新颖方法, 能够代表非原子细节中的多个生物细胞。 我们的方法是针对场景设计的, 这些场景是根据一定的建筑规则按程序设计的。 显示大场景通常需要整个场景在核心中可用, 或者, 需要核心管理将数据装入记忆层, 作为交接循环的一部分。 我们提议, 而不是核心内存管理, 程序上生成点点点点。 关键的想法是一个基于位置和视图的程序场景建设战略, 即相机周围的片段不全场场景可以在任何特定时间的 GPU 记忆中找到。 大场景通常需要整个场景中的整个场景, 或者说, 它需要核心管理器管理器将数据装入记忆层作为交错的一部分。 我们的原子细节以直径直线路图形式组成一个加速的数据结构结构结构, 离现代GPUPO-2的直线图模型远处, 直径直径直径直径直径, 直径直径直径直径的直径直径直径直径直径直径直径直的直的直径直径直径直径直径直径直径直的直路径直路路路路路路路路路路路路路路路路路路路路路路路路路路。, 。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员