We consider regression estimation with modified ReLU neural networks in which network weight matrices are first modified by a function $\alpha$ before being multiplied by input vectors. We give an example of continuous, piecewise linear function $\alpha$ for which the empirical risk minimizers over the classes of modified ReLU networks with $l_1$ and squared $l_2$ penalties attain, up to a logarithmic factor, the minimax rate of prediction of unknown $\beta$-smooth function.
翻译:我们考虑使用经修改的ReLU神经网络进行回归估计,其中网络重量矩阵首先用一个函数 $\ alpha$来修改,然后用输入矢量来乘以。我们举了一个连续的、片段线性函数 $\ alpha$的例子,在经过修改的ReLU网络类别中,经验风险最小化者以1美元和2美元罚款折成,最高为对数系数,预测未知的$\beta$-mooft函数的最小速率。