We consider combinatorial semi-bandits over a set of arms ${\cal X} \subset \{0,1\}^d$ where rewards are uncorrelated across items. For this problem, the algorithm ESCB yields the smallest known regret bound $R(T) = {\cal O}\Big( {d (\ln m)^2 (\ln T) \over \Delta_{\min} }\Big)$, but it has computational complexity ${\cal O}(|{\cal X}|)$ which is typically exponential in $d$, and cannot be used in large dimensions. We propose the first algorithm which is both computationally and statistically efficient for this problem with regret $R(T) = {\cal O} \Big({d (\ln m)^2 (\ln T)\over \Delta_{\min} }\Big)$ and computational complexity ${\cal O}(T {\bf poly}(d))$. Our approach involves carefully designing an approximate version of ESCB with the same regret guarantees, showing that this approximate algorithm can be implemented in time ${\cal O}(T {\bf poly}(d))$ by repeatedly maximizing a linear function over ${\cal X}$ subject to a linear budget constraint, and showing how to solve this maximization problems efficiently.


翻译:我们考虑对一组军火进行组合式半土匪 $[cal X}\ subset = 0. 1 ⁇ d$, 奖励在项目之间并不相关。 对此问题, 运算 ESCB 生成了已知最小的遗憾约束 $( T) = $( cal O) ⁇ Big ( {d( m) = 2 ( ln)\ ( t)\ over\ Delta ⁇ min} ⁇ Big), 但它有计算复杂性 $( cal O} ( {cal X ⁇ ) $, 通常以美元指数指数指数指数( $) = 0. 1, 并且无法在大范围内使用。 我们建议的第一种算法, 既在计算和统计上都有效, 美元( T) = =\ cal_ O}, 表示这一算法是如何通过一个最大程度的 解算法, 显示这个算法如何在 AL $ 的 里 选项上 $ 。

0
下载
关闭预览

相关内容

CC在计算复杂性方面表现突出。它的学科处于数学与计算机理论科学的交叉点,具有清晰的数学轮廓和严格的数学格式。官网链接:https://link.springer.com/journal/37
专知会员服务
50+阅读 · 2020年12月14日
多标签学习的新趋势(2020 Survey)
专知会员服务
41+阅读 · 2020年12月6日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
28+阅读 · 2020年11月4日
最新《高级算法》Advanced Algorithms,176页pdf
专知会员服务
91+阅读 · 2020年10月22日
【斯坦福】凸优化圣经- Convex Optimization (附730pdf下载)
专知会员服务
221+阅读 · 2020年6月5日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
腊月廿八 | 强化学习-TRPO和PPO背后的数学
AI研习社
17+阅读 · 2019年2月2日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年3月6日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
腊月廿八 | 强化学习-TRPO和PPO背后的数学
AI研习社
17+阅读 · 2019年2月2日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员