Clinical trials are indispensable in developing new treatments, but they face obstacles in patient recruitment and retention, hindering the enrollment of necessary participants. To tackle these challenges, deep learning frameworks have been created to match patients to trials. These frameworks calculate the similarity between patients and clinical trial eligibility criteria, considering the discrepancy between inclusion and exclusion criteria. Recent studies have shown that these frameworks outperform earlier approaches. However, deep learning models may raise fairness issues in patient-trial matching when certain sensitive groups of individuals are underrepresented in clinical trials, leading to incomplete or inaccurate data and potential harm. To tackle the issue of fairness, this work proposes a fair patient-trial matching framework by generating a patient-criterion level fairness constraint. The proposed framework considers the inconsistency between the embedding of inclusion and exclusion criteria among patients of different sensitive groups. The experimental results on real-world patient-trial and patient-criterion matching tasks demonstrate that the proposed framework can successfully alleviate the predictions that tend to be biased.
翻译:临床试验在新疗法的开发中发挥着不可替代的作用,但是在患者招募和保留方面面临着障碍,从而阻碍了必要参与者的招募。为了解决这些挑战,创建了深度学习框架来匹配患者和试验。这些框架计算患者与临床试验的符合性标准之间的相似性,考虑到包含和排除标准之间的差异。最近的研究表明,这些框架优于早期的方法。然而,当某些敏感群体在临床试验中处于人数偏少的状态时,深度学习模型可能会引起公平性问题,从而导致数据不完整或不准确,并造成潜在的危害。为了解决公平性问题,本文提出了一个公平的患者-试验匹配框架,通过生成患者-标准级别的公平性约束条件。所提出的框架考虑到了不同敏感群体患者的拟合中包含和排除标准的嵌入不一致问题。在真实患者-试验匹配和患者-标准匹配任务的实验结果表明,所提出的框架可以成功地缓解倾向于存在偏见的预测。