In this article we propose a boosting algorithm for regression with functional explanatory variables and scalar responses. The algorithm uses decision trees constructed with multiple projections as the "base-learners", which we call "functional multi-index trees". We establish identifiability conditions for these trees and introduce two algorithms to compute them: one finds optimal projections over the entire tree, while the other one searches for a single optimal projection at each split. We use numerical experiments to investigate the performance of our method and compare it with several linear and nonlinear regression estimators, including recently proposed nonparametric and semiparametric functional additive estimators. Simulation studies show that the proposed method is consistently among the top performers, whereas the performance of any competitor relative to others can vary substantially across different settings. In a real example, we apply our method to predict electricity demand using price curves and show that our estimator provides better predictions compared to its competitors, especially when one adjusts for seasonality.
翻译:在此篇文章中, 我们提出一个包含功能解释变量和比例响应的回归加速算法。 算法使用以多重预测构建的决策树, 称为“ 基础激光器 ” 。 我们为这些树建立了可识别性条件, 并引入了两种算法来计算这些树 : 一种在整棵树上找到最佳预测, 而另一种则在每一分割时寻找单一最佳预测。 我们使用数字实验来调查我们的方法的性能, 并将其与几个线性和非线性回归估计器进行比较, 包括最近提出的非参数和半参数功能性函数添加测算器。 模拟研究表明, 任何竞争者相对于其他树木的性能都会在不同环境中有很大差异。 真正的例子是, 我们运用我们的方法, 使用价格曲线来预测电力需求, 并显示我们的测算器提供比竞争者更好的预测, 特别是当有人调整季节性时。