One of the central problems studied in the theory of machine learning is the question of whether, for a given class of hypotheses, it is possible to efficiently find a {consistent} hypothesis, i.e., which has zero training error. While problems involving {\em convex} hypotheses have been extensively studied, the question of whether efficient learning is possible for non-convex hypotheses composed of possibly several disconnected regions is still less understood. Although it has been shown quite a while ago that efficient learning of weakly convex hypotheses, a parameterized relaxation of convex hypotheses, is possible for the special case of Boolean functions, the question of whether this idea can be developed into a generic paradigm has not been studied yet. In this paper, we provide a positive answer and show that the consistent hypothesis finding problem can indeed be solved in polynomial time for a broad class of weakly convex hypotheses over metric spaces. To this end, we propose a general domain-independent algorithm for finding consistent weakly convex hypotheses and prove sufficient conditions for its efficiency that characterize the corresponding hypothesis classes. To illustrate our general algorithm and its properties, we discuss several non-trivial learning examples to demonstrate how it can be used to efficiently solve the corresponding consistent hypothesis finding problem. Without the weak convexity constraint, these problems are known to be computationally intractable. We then proceed to show that the general idea of our algorithm can even be extended to the case of extensional weakly convex hypotheses, as it naturally arise, e.g., when performing vertex classification in graphs. We prove that using our extended algorithm, the problem can be solved in polynomial time provided the distances in the domain can be computed efficiently.
翻译:暂无翻译