We study the use of spike and slab priors for consistent estimation of the number of change points and their locations. Leveraging recent results in the variable selection literature, we show that an estimator based on spike and slab priors achieves optimal localization rate in the multiple offline change point detection problem. Based on this estimator, we propose a Bayesian change point detection method, which is one of the fastest Bayesian methodologies, and it is more robust to misspecification of the error terms than the competing methods. We demonstrate through empirical work the good performance of our approach vis-a-vis some state-of-the-art benchmarks.
翻译:我们研究用钉子和板块前列物来一致估计变化点数及其位置。利用变量选择文献中最近的结果,我们显示,基于钉子和板块前列物的估测器在多个离线变化点检测问题中实现了最佳的本地化率。基于这个估计器,我们建议采用贝叶斯变化点检测方法,这是巴耶斯州最快的方法之一,对错误术语的误判比对竞争方法的误判更为有力。我们通过实验工作,展示了我们的方法相对于一些最先进的基准的良好表现。