We study the problem of robustly estimating the mean or location parameter without moment assumptions. We show that for a large class of symmetric distributions, the same error as in the Gaussian setting can be achieved efficiently. The distributions we study include products of arbitrary symmetric one-dimensional distributions, such as product Cauchy distributions, as well as elliptical distributions. For product distributions and elliptical distributions with known scatter (covariance) matrix, we show that given an $\varepsilon$-corrupted sample, we can with probability at least $1-\delta$ estimate its location up to error $O(\varepsilon \sqrt{\log(1/\varepsilon)})$ using $\tfrac{d\log(d) + \log(1/\delta)}{\varepsilon^2 \log(1/\varepsilon)}$ samples. This result matches the best-known guarantees for the Gaussian distribution and known SQ lower bounds (up to the $\log(d)$ factor). For elliptical distributions with unknown scatter (covariance) matrix, we propose a sequence of efficient algorithms that approaches this optimal error. Specifically, for every $k \in \mathbb{N}$, we design an estimator using time and samples $\tilde{O}({d^k})$ achieving error $O(\varepsilon^{1-\frac{1}{2k}})$. This matches the error and running time guarantees when assuming certifiably bounded moments of order up to $k$. For unknown covariance, such error bounds of $o(\sqrt{\varepsilon})$ are not even known for (general) sub-Gaussian distributions. Our algorithms are based on a generalization of the well-known filtering technique. We show how this machinery can be combined with Huber-loss-based techniques to work with projections of the noise that behave more nicely than the initial noise. Moreover, we show how SoS proofs can be used to obtain algorithmic guarantees even for distributions without a first moment. We believe that this approach may find other applications in future works.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年12月28日
Arxiv
10+阅读 · 2018年4月19日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员