In this paper, we study a parallel-in-time (PinT) algorithm for all-at-once system from a non-local evolutionary equation with weakly singular kernel where the temporal term involves a non-local convolution with a weakly singular kernel and the spatial term is the usual Laplacian operator with variable coefficients. We propose to use a two-sided preconditioning technique for the all-at-once discretization of the equation. Our preconditioner is constructed by replacing the variable diffusion coefficients with a constant coefficient to obtain a constant-coefficient all-at-once matrix. We split a square root of the constant Laplacian operator out of the constant-coefficient all-at-once matrix as a right preconditioner and take the remaining part as a left preconditioner, which constitutes our two-sided preconditioning. Exploiting the diagonalizability of the constant-Laplacian matrix and the triangular Toeplitz structure of the temporal discretization matrix, we obtain efficient representations of inverses of the right and the left preconditioners, because of which the iterative solution can be fast updated in a PinT manner. Theoretically, the condition number of the two-sided preconditioned matrix is proven to be uniformly bounded by a constant independent of the matrix size. To the best of our knowledge, for the non-local evolutionary equation with variable coefficients, this is the first attempt to develop a PinT preconditioning technique that has fast and exact implementation and that the corresponding preconditioned system has a uniformly bounded condition number. Numerical results are reported to confirm the efficiency of the proposed two-sided preconditioning technique.
翻译:在本文中,我们从非本地进化方程式中研究一个全自动系统的平行即时算法(Pint),由非本地演进方程式和微弱单单内核组成。我们研究一个非本地演进方程式的平行即时算法(Pint),其中,时间性术语涉及非本地演进,与弱单内核形成一个微单内核,空间术语是常用的拉普拉西亚运算器,而空间术语则是带有可变系数的常用拉普拉西亚运算器。我们提议对等方方格的全自动分解使用双向的先决条件技术。我们用一个不变离异系数替换可变扩散系数,以获得一个恒定全全基质全基质的常数。我们将恒定的拉普拉卡运算操作器的平方根从一个平方根根根根,作为正确前提,其余部分作为左端先决条件,构成我们两面的拉平面性矩阵的分数。我们提出的时离心性基矩阵结构结构的精确度,我们得到对准的对准右和左端基质前基矩阵的表述的准确性表示一个正对立结果,因为平面技术可以快速更新为快速的平方端技术,而以快速的平基质的平面的精确的精确的基质技术是快速的精确的基数。通过直基质性基数。我们基质的基质的基质的基数,一个平基质的基质技术的基数,一个直向的基数的基数,以快速更新到快速更新到快速更新的基数的基数。