We study in this paper three variants of the high-order Discontinuous Galerkin (DG) method with Runge-Kutta (RK) time integration for the induction equation, analysing their ability to preserve the divergence free constraint of the magnetic field. To quantify divergence errors, we use a norm based on both a surface term, measuring global divergence errors, and a volume term, measuring local divergence errors. This leads us to design a new, arbitrary high-order numerical scheme for the induction equation in multiple space dimensions, based on a modification of the Spectral Difference (SD) method [1] with ADER time integration [2]. It appears as a natural extension of the Constrained Transport (CT) method. We show that it preserves $\nabla\cdot\vec{B}=0$ exactly by construction, both in a local and a global sense. We compare our new method to the 3 RKDG variants and show that the magnetic energy evolution and the solution maps of our new SD-ADER scheme are qualitatively similar to the RKDG variant with divergence cleaning, but without the need for an additional equation and an extra variable to control the divergence errors. [1] Liu Y., Vinokur M., Wang Z.J. (2006) Discontinuous Spectral Difference Method for Conservation Laws on Unstructured Grids. In: Groth C., Zingg D.W. (eds) Computational Fluid Dynamics 2004. Springer, Berlin, Heidelberg [2] Dumbser M., Castro M., Par\'es C., Toro E.F (2009) ADER schemes on unstructured meshes for nonconservative hyperbolic systems: Applications to geophysical flows. In: Computers & Fluids, Volume 38, Issue 9


翻译:本文中我们研究了三种高顺序不连续的 Galerkin (DG) 方法的变体, 包括 Runge- Kutta (RK) 上岗方程式的时间整合, 分析它们保存磁场差异限制的能力。 为了量化差异错误, 我们使用基于表面术语的规范, 测量全球差异错误, 和量术语, 测量本地差异错误。 这导致我们设计一个新的任意的高顺序数字方案, 用于多个空间层面的感应方程, 其基础是修改 Spectral 差异(SD) 方法 [1] 与 ADER 时间整合 [2] 。 这似乎是 Constracstraced Stredual deflection (CT) 方法的自然延伸。 我们显示它保存了$\nabla\cd\d\wd\veecralcreau 。 我们将新方法与3RKDG变量的进化和解决方案在性质上与 RKDG变异的变体, 但不必需要一个额外的方程式, delfal dealalalalalalalal.

0
下载
关闭预览

相关内容

最新《深度学习理论》笔记,68页pdf
专知会员服务
50+阅读 · 2021年2月14日
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
75+阅读 · 2020年4月24日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
3+阅读 · 2018年5月20日
VIP会员
相关VIP内容
相关资讯
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员