We develop a discrete counterpart of the De Giorgi-Nash-Moser theory, which provides uniform H\"older-norm bounds on continuous piecewise affine finite element approximations of second-order linear elliptic problems of the form $-\nabla \cdot(A\nabla u)=f-\nabla\cdot F$ with $A\in L^\infty(\Omega;\mathbb{R}^{n\times n})$ a uniformly elliptic matrix-valued function, $f\in L^{q}(\Omega)$, $F\in L^p(\Omega;\mathbb{R}^n)$, with $p > n$ and $q > n/2$, on $A$-nonobtuse shape-regular triangulations, which are not required to be quasi-uniform, of a bounded polyhedral Lipschitz domain $\Omega \subset \mathbb{R}^n$.
翻译:我们开发了德Giorgi-Nash-Moser理论的离散对应方,该理论在连续的pacefise falder-norm 上提供了统一的 H\"older-norm 边框值功能,$-nabla\cdot(A\nabla u)= f-nabla\cdot F$,$-nabla=f-nabla\cdot F$,$-nabla\cdy(Omega;\mathb{r\tims n}(Omega)$,美元-n-nobtus 形状常规三角体,而美元-nobt-obt-fty(Omega); 美元/omega subset\mathbr}(Omega) $,$_p\ p(Omega);\ p(Omega);\\\\\\\\\\\\\\ n$,$,$,美元,美元,美元。