Quantifier elimination over the reals is a central problem in computational real algebraic geometry, polynomial system solving and symbolic computation. Given a semi-algebraic formula (whose atoms are polynomial constraints) with quantifiers on some variables, it consists in computing a logically equivalent formula involving only unquantified variables. When there is no alternate of quantifier, one has a one block quantifier elimination problem. We design a new practically efficient algorithm for solving one block quantifier elimination problems when the input semi-algebraic formula is a system of polynomial equations satisfying some mild assumptions such as transversality. When the input is generic, involves $s$ polynomials of degree bounded by $D$ with $n$ quantified variables and $t$ unquantified ones, we prove that this algorithm outputs semi-algebraic formulas of degree bounded by $\mathcal{D}$ using $O\ {\widetilde{~}}\left (n\ 8^{t}\ \mathcal{D}^{3t+2}\ \binom{t+\mathcal{D}}{t} \right )$ arithmetic operations in the ground field where $\mathcal{D} = n\ D^s(D-1)^{n-s+1}\ \binom{n}{s}$. In practice, it allows us to solve quantifier elimination problems which are out of reach of the state-of-the-art (up to $8$ variables).


翻译:在计算真实的代数几何学、多元星系解析和符号计算中,量化器的消除是计算真实的代数、多元星系解析和符号计算中的一个中心问题。考虑到某些变量的半数值公式(其原子是多数值限制),它包括计算一个逻辑等值公式,其中仅包含未量化变量。当没有替代的量化符时,有一个区块量化器消除问题。当输入的半数值公式是满足某些温度假设的多数值方程式系统时,我们设计了一种新的实际有效的算法,以解决一个区块量化消除问题。如果输入的半数值是多数值方形方程式系统,满足了一些比较性假设。当输入为通用时,它涉及美元多数值的多数值,其中含有美元量化变量和未量化变量的美元,我们证明这一算法输出的半数值由 $\mathcal{D_Q_Q_Q_BAR__BAR_BAR_BAR_BAR_BAR_D_D_D_D_ dal_ma_ma_BAR_BAR_BAR_________Q_______BAR___BAR_BAR_________BAR_________________BAR_____________________BAR_________________________________________________________________________________________________________________________________________________________________________________________

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【IJCAJ 2020】多通道神经网络 Multi-Channel Graph Neural Networks
专知会员服务
25+阅读 · 2020年7月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
讲透RCNN, Fast-RCNN, Faster-RCNN,将CNN用于目标检测
数据挖掘入门与实战
18+阅读 · 2018年4月20日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Few Shot Learning with Simplex
Arxiv
5+阅读 · 2018年7月27日
Arxiv
3+阅读 · 2018年3月13日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【IJCAJ 2020】多通道神经网络 Multi-Channel Graph Neural Networks
专知会员服务
25+阅读 · 2020年7月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
讲透RCNN, Fast-RCNN, Faster-RCNN,将CNN用于目标检测
数据挖掘入门与实战
18+阅读 · 2018年4月20日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员