There has been an increasing interest in modeling continuous-time dynamics of temporal graph data. Previous methods encode time-evolving relational information into a low-dimensional representation by specifying discrete layers of neural networks, while real-world dynamic graphs often vary continuously over time. Hence, we propose Continuous Temporal Graph Networks (CTGNs) to capture the continuous dynamics of temporal graph data. We use both the link starting timestamps and link duration as evolving information to model the continuous dynamics of nodes. The key idea is to use neural ordinary differential equations (ODE) to characterize the continuous dynamics of node representations over dynamic graphs. We parameterize ordinary differential equations using a novel graph neural network. The existing dynamic graph networks can be considered as a specific discretization of CTGNs. Experiment results on both transductive and inductive tasks demonstrate the effectiveness of our proposed approach over competitive baselines.
翻译:对模拟时间图数据的连续时间动态越来越感兴趣。 以往的方法通过指定神经网络的离散层,将时间变化关系信息编码为低维代表层,而现实世界动态图则往往随时间而变化。 因此,我们提议连续时间图网络(CTG)来捕捉时间图数据的连续动态。 我们使用连接起始时间标记和链接持续时间作为不断演变的信息模型,以模拟节点的连续动态。 关键的想法是使用神经普通差异方程式(ODE)来描述动态图的节点表达面的连续动态。 我们使用新颖的图形神经网络对普通差异方程式进行参数化。 现有的动态图形网络可以被视为CTGN的具体独立化。 关于转引和感性任务的实验结果表明我们所提议的方法在竞争性基线上的有效性。