The Shapley value concept from cooperative game theory has become a popular technique for interpreting ML models, but efficiently estimating these values remains challenging, particularly in the model-agnostic setting. Here, we revisit the idea of estimating Shapley values via linear regression to understand and improve upon this approach. By analyzing the original KernelSHAP alongside a newly proposed unbiased version, we develop techniques to detect its convergence and calculate uncertainty estimates. We also find that the original version incurs a negligible increase in bias in exchange for significantly lower variance, and we propose a variance reduction technique that further accelerates the convergence of both estimators. Finally, we develop a version of KernelSHAP for stochastic cooperative games that yields fast new estimators for two global explanation methods.
翻译:合作游戏理论的沙普利价值概念已成为解释ML模型的流行技术,但有效估计这些数值仍然具有挑战性,特别是在模型-不可知性环境下。在这里,我们重新审视通过线性回归估计沙普利值的想法,以了解并改进这一方法。我们通过分析最初的KernelSHAP以及新提出的不偏颇版本,开发了发现其趋同和计算不确定性估计值的技术。我们还发现,原始版本的偏差略有增加,以换取显著的更低差异,我们提出了进一步加快两个估计者汇合的减少差异技术。最后,我们开发了一套KernSHAP,用于为两种全球解释方法产生快速新估计值的随机合作游戏。