Bridge sampling is a powerful Monte Carlo method for estimating ratios of normalizing constants. Various methods have been introduced to improve its efficiency. These methods aim to increase the overlap between the densities by applying appropriate transformations to them without changing their normalizing constants. In this paper, we first give a new estimator of the asymptotic relative mean square error (RMSE) of the optimal Bridge estimator by equivalently estimating an $f$-divergence between the two densities. We then utilize this framework and propose $f$-GAN-Bridge estimator ($f$-GB) based on a bijective transformation that maps one density to the other. Such transformation is chosen to minimize a specific $f$-divergence between them using an $f$-GAN \citep{nowozin2016f}. We show it is equivalent to minimizing the asymptotic RMSE of the optimal Bridge estimator with respect to the densities. In other words, $f$-GB is optimal in the sense that asymptotically, it can achieve an RMSE lower than that achieved by Bridge estimators based on any transformed density within the class of densities generated by the candidate transformations. Numerical experiments show that $f$-GB outperforms existing methods in simulated and real-world examples. In addition, we discuss how Bridge estimators naturally arise from the problem of $f$-divergence estimation.
翻译:Monte Carlo 取样是估算正常常数比率的强大方法。 采用了各种方法来提高效率。 这些方法的目的是通过在不改变正常常数的情况下对密度进行适当变换来增加密度之间的重叠。 在本文中, 我们首先对最佳大桥估计器( RMSE) 的无光度相对平均正方差( RMSE) 进行新的估计, 以等值估算两个密度之间的差值。 然后我们利用这个框架, 并提议美元- GAN- Bridge 估测器( f- GB) 。 换句话说, 美元- GB 估测器( 美元- GB ), 选择这种变异是为了尽可能减少它们之间的特定美元- gAN \ ciep{ nonotozin2016f} 。 我们显示这相当于将最佳大桥估测器( 美元) 的缺值最小值与密度相比。 换句话说, 美元- GB 最优的测算器( GB ) 最优感知性地说, 这种变型的变型的变型的变型机型的变型方法是, 所创式的变型的变型的机型的变型的机型的机型的变型的机型的机型的机型的机型的机型的机型的机型的机型方法, 以的变型的机型的机型的机型的机型的机型的机型的机型的机型的机型的机型的机型的机型的机型的机型的机型的机型的机型的机型的机型的机型的机型的机型的机型的机型的机型的机型,, 的机型的机型的机型的机型的机型的机型的机型的机型的机型的机型的机型的机型的机型的机型的机型的机型的机型的机型的机型的机型的机型的机型的机型的机型的机型的机型的机型的机型的机型的机型的机型的机型的机型的机型的机型的机型的机型的机型的机型