What is the value of an individual model in an ensemble of binary classifiers? We answer this question by introducing a class of transferable utility cooperative games called \textit{ensemble games}. In machine learning ensembles, pre-trained models cooperate to make classification decisions. To quantify the importance of models in these ensemble games, we define \textit{Troupe} -- an efficient algorithm which allocates payoffs based on approximate Shapley values of the classifiers. We argue that the Shapley value of models in these games is an effective decision metric for choosing a high performing subset of models from the ensemble. Our analytical findings prove that our Shapley value estimation scheme is precise and scalable; its performance increases with size of the dataset and ensemble. Empirical results on real world graph classification tasks demonstrate that our algorithm produces high quality estimates of the Shapley value. We find that Shapley values can be utilized for ensemble pruning, and that adversarial models receive a low valuation. Complex classifiers are frequently found to be responsible for both correct and incorrect classification decisions.


翻译:个人模型在二进制分类器组合中的价值是什么? 我们通过引入一个称为\ textit{ commenble game} 的可转让实用合作游戏类别来回答这个问题。 在机器学习组合中,预先培训的模型合作做出分类决定。为了量化模型在这些组合游戏中的重要性,我们定义了\ textit{ Troupe} -- -- 一种基于分类器的粗略值分配报酬的高效算法。我们争辩说,这些游戏中模型的损耗值是从组合中选择高性能一组模型的有效决定指标。我们的分析结论证明,我们的精度价值估计方案是准确和可缩放的;其性能随着数据集和组合的大小而提高。真实世界图表分类任务的经验性结果表明,我们的算法可以产生高质量的沙普利值估计值。我们发现,可使用沙普利值来计算组合,而敌对模型得到低值的估价。 复杂分类者往往对正确和不正确的分类决定负责。

0
下载
关闭预览

相关内容

专知会员服务
18+阅读 · 2021年7月11日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员